Browse > Article
http://dx.doi.org/10.5423/PPJ.NT.12.2020.0219

The Bacillus zanthoxyli HS1 Strain Renders Vegetable Plants Resistant and Tolerant against Pathogen Infection and High Salinity Stress  

Usmonov, Alisher (Department of Applied Bioscience, Dong-A University)
Yoo, Sung-Je (National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Sang Tae (Department of Applied Bioscience, Dong-A University)
Yang, Ji Sun (Department of Applied Bioscience, Dong-A University)
Sang, Mee Kyung (National Institute of Agricultural Sciences, Rural Development Administration)
Jung, Ho Won (Department of Molecular Genetics, Dong-A University)
Publication Information
The Plant Pathology Journal / v.37, no.1, 2021 , pp. 72-78 More about this Journal
Abstract
Various management systems are being broadly employed to minimize crop yield loss resulting from abiotic and biotic stresses. Here we introduce a Bacillus zanthoxyli HS1 strain as a potent candidate for managing manifold stresses on vegetable plants. Considering 16S rDNA sequence and biochemical characteristics, the strain is closely related to B. zanthoxyli. The B. zanthoxyli HS1's soil-drench confers disease resistance on tomato and paprika plants against infection with Ralstonia solanacearum and Phytophthora capsici, respectively. Root and shoot growths are also increased in B. zanthoxyli HS1-treated cabbage, cucumber, and tomato plants, compared with those in mock-treated plants, after application of high salinity solution. Moreover, the pretreatment of B. zanthoxyli HS1 on cabbage plants inhibits the degradation of chloroplast pigments caused by high salinity stresses, whereas the inhibitory effect is not observed in cucumber plants. These findings suggest that B. zanthoxyli HS1 stain inhibits disease development and confers tolerance to salinity stress on vegetable plants.
Keywords
Bacillus zanthoxyli; disease resistance; high salinity; stress tolerance; vegetable crops;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Walters, D., Walsh, D., Newton, A. and Lyon, G. 2005. Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95:1368-1373.   DOI
2 Yoo, S.-J., Kim, J. W., Kim, S. T., Weon, H.-Y., Song, J. and Sang, M. K. 2019. Effect of Bacillus mesonae H20-5 on fruit yields and quality in protected cultivation. Res. Plant Dis. 25:84-88.   DOI
3 Miller, R. N. G., Costa Alves, G. S. and Van Sluys, M.-A. 2017. Plant immunity: unravelling the complexity of plant responses to biotic stresses. Ann. Bot. 119:681-687.   DOI
4 Mittal, S., Kumari, N. and Sharma, V. 2012. Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol. Biochem. 54:17-26.   DOI
5 Mungala, A. J., Radhakrishnan, T. and Dobaria, J. R. 2008. In vitro screening of 123 Indian peanut cultivars for sodium chloride induced salinity tolerance. World J. Agric. Sci. 4:574-582.
6 Munns, R. and Gilliham, M. 2015. Salinity tolerance of crops - what is the cost? New Phytol. 208:668-673.   DOI
7 Munoz-Mayor, A., Pineda, B., Garcia-Abellan, J. O., Anton, T., Garcia-Sogo, B., Sanchez-Bel, P., Flores, F. B., Atares, A., Angosto, T., Pintor-Toro, J. A., Moreno, V. and Bolarin, M. C. 2012. Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. J. Plant Physiol. 169:459-468.   DOI
8 Polonenko, D. R., Mayfield, C. I. and Dumbroff, E. B. 1981. Microbial responses to salt-induced osmotic stress. Plant Soil 59:269-285.   DOI
9 Qu, L., Huang, Y., Zhu, C., Zeng, H., Shen, C., Liu, C., Zhao, Y. and Pi, E. 2016. Rhizobia-inoculation enhances the soybean's tolerance to salt stress. Plant Soil 400:209-222.   DOI
10 Rathinasabapathi, B. 2000. Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann. Bot. 86:709-716.   DOI
11 Rouphael, Y. and Colla, G. 2018. Synergistic biostimulatory action: designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 9:1655.   DOI
12 Ruan, C.-J., da Silva, J. A. T., Mopper, S., Qin, P. and Lutts, S. 2010. Halophyte improvement for a salinized world. Crit. Rev. Plant Sci. 29:329-359.   DOI
13 Sarkar, A., Ghosh, P. K., Pramanik, K., Mitra, S., Soren, T., Pandey, S., Mondal, M. H. and Maiti, T. K. 2018. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res. Microbiol. 169:20-32.   DOI
14 Singh, A. K. and Dubey, R. S. 1995. Changes in chlorophyll a and b contents and activities of photosystems 1 and 2 in rice seedlings induced by NaCl. Photosynthetica 31:489-499.
15 Thurston, H. D. 1992. Sustainable practices for plant disease management in traditional farming systems. Westview Press, Boulder, CO, USA. 280 pp.
16 Turan, S. and Tripathy, B. C. 2015. Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings. Physiol. Plant. 153:477-491.   DOI
17 Mahajan, S. and Tuteja, N. 2005. Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444:139-158.   DOI
18 Majeed, A., Muhammad, Z. and Ahmad, H. 2018. Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Rep. 37:1599-1609.   DOI
19 Flowers, T. J. 2004. Improving crop salt tolerance. J. Exp. Bot. 55:307-319.   DOI
20 Fita, A., Rodriguez-Burruezo, A., Boscaiu, M., Prohens, J. and Vicente, O. 2015. Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front. Plant Sci. 6:978.
21 Flowers, T. J. and Yeo, A. R. 1995. Breeding for salinity resistance in crop plants: where next? Aust. J. Plant Physiol. 22:875-884.   DOI
22 Glick, B. R. 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol. Lett. 251:1-7.   DOI
23 Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:307-319.   DOI
24 Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S. E. and Shabala, S. 2011. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J. Exp. Bot. 62:185-193.   DOI
25 Havaux, M. 2014. Carotenoid oxidation products as stress signals in plants. Plant J. 79:597-606.   DOI
26 Ilangumaran, G. and Smith, D. L. 2017. Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front. Plant Sci. 8:1768.   DOI
27 Jamil, M., Rehman, S. U., Lee, K. J., Kim, J. M., Kim, H.-S. and Rha, E. S. 2007. Salinity reduced growth PS2 photochemistry and chlorophyll content in radish. Sci. Agric. 64:111-118.   DOI
28 Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., Cetner, M. D., Lukasik, I., Goltsev, V. and Ladle, R. J. 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 38:102.   DOI
29 Kumar, D. 2005. Breeding for drought resistance. In: Abiotic stresses: plant resistance through breeding and molecular approaches, eds. by M. Ashraf and P. J. C. Harris, pp. 145-147. Food Products Press, New York, NY, USA.
30 Kumar, A. and Verma, J. P. 2018. Does plant-Microbe interaction confer stress tolerance in plants: a review? Microbiol. Res. 207:41-52.   DOI
31 Lane, D. J. 1991. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics, eds. by E. Stackebrandt and M. Goodfellow, pp. 115-175. Wiley, Chichester, UK.
32 Li, H.-W., Zang, B.-S., Deng, X.-W. and Wang, X.-P. 2011. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007-1018.   DOI
33 Li, M., Hong, C. Y., Yan, W. X., Chao, Z. S., Gang, Y. C., Ling, D. J., Kui, Z. X., Qin, X. J., Liang, Z. M. and He, M. M. 2017. Bacillus zanthoxyli sp. nov., a novel nematicidal bacterium isolated from Chinese red pepper (Zanthoxylum bungeanum Maxim) leaves in China. Antonie Van Leeuwenhoek 110:1179-1187.   DOI
34 Liang, Z. S., Ding, Z. R. and Wang, S. T. R. 1992. Study on type of water stress adaptation in both Brassica napus and B. juncea L. species. Acta Bot. 12:38-45.
35 Bai, Y., Kissoudis, C., Yan, Z., Visser, R. G. F. and van der Linden, G. 2018. Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress. Plant J. 93:781-793.   DOI
36 Chakraborty, K., Bhaduri, D., Meena, H. N. and Kalariya, K. 2016. External potassium (K+) application improves salinity tolerance by promoting Na+-exclusion, K+-accumulation and osmotic adjustment in contrasting peanut cultivars. Plant Physiol. Biochem. 103:143-153.   DOI
37 Egamberdieva, D. 2009. Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol. Plant. 31:861-864.   DOI
38 Choudhary, D. K., Kasotia, A., Jain, S., Vaishnav, A., Kumari, S., Sharma, K. P. and Varma, A. 2015. Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J. Plant Growth Regul. 35:276-300.   DOI
39 Dangl, J. L. and Jones, J. D. 2001. Plant pathogens and integrated defence responses to infection. Nature 411:826-833.   DOI
40 Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G. and Schroeder, J. I. 2014. Plant salt-tolerance mechanisms. Trends Plant Sci. 19:371-379.   DOI
41 Egamberdieva, D. 2011. Pseudomonas chlororaphis: a salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiol. Plant. 34:751-756.   DOI
42 Etesami, H. and Glick, B. R. 2020. Halotolerant plant growth-promoting bacteria: prospects for alleviating salinity stress in plants. Environ. Exp. Bot. 178:104124.   DOI
43 Ullah, A., Heng, S., Munis, M. F. H., Fahad, S. and Yang, X. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ. Exp. Bot. 117:28-40.   DOI
44 Ullah, S., Hussain, M. B., Khan, M. Y. and Asghar, H. N. 2017. Ameliorating salt stress in crops through plant growth-promoting bacteria. In: Plant-microbe interactions in agroecological perspectives, eds. by D. P. Singh, H. B. Singh and R. Prabha, pp. 549-575. Springer, Singapore.
45 Van Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S. and Maggio, A. 2017. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 4:5.   DOI