• Title/Summary/Keyword: cubic function

Search Result 292, Processing Time 0.028 seconds

A Study on the Status of Supply-Demand and Procurement of the Timber for Wooden Cultural Properties (문화재용(文化財用) 목재(木材)의 수급(需給) 및 유통(流通) 실태(實態))

  • Bae, Jae Soo;Kim, Wae Jung;Park, Kyung Seok;Baik, Eul Sun
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.1
    • /
    • pp.126-134
    • /
    • 2000
  • The purpose of this study is to examine the status of supply-demand and procurement of the timber used for wooden cultural properties. Because people require the high quality pine timber with cultural assurance and public function for cultural properties, it is priced far higher than ordinary construction timber. The timber consumption was estimated at 18 thousand cubic meter in 1998, of which the large sized log(LSL) with the small end diameter over 30cm consisted of 35.5%, equivalent to 6,300 cubic meter. Majority of the timber was supplied from private forest located in Kangwon-do and national forest, accounting for 65.7% and 16.7%, respectively. Recently the supply more and more relied on timber logged in Kangwon-do. Owing to lack of domestic supply of LSL class timber, part of the volume has been substituted by import log. Most of carpenters working on cultural properties thought that supply of LSL timber would hardly meet the increasing demand for uses of wooden cultural properties. Finally, in order to uphold the tradition of wooden cultural properties, it is necessary to establish a forest management plan which aim at producing large size high quality pine timber.

  • PDF

Construction of a reference stature growth curve using spline function and prediction of final stature in Korean (스플라인 함수를 이용한 한국인 키 기준 성장 곡선 구성과 최종 키 예측 연구)

  • An, Hong-Sug;Lee, Shin-Jae
    • The korean journal of orthodontics
    • /
    • v.37 no.1 s.120
    • /
    • pp.16-28
    • /
    • 2007
  • Objective: Evaluation of individual growth is important in orthodontics. The aim of this study was to develop a convenient software that can evaluate current growth status and predict further growth. Methods: Stature data of 2 to 20 year-old Koreans (4893 boys and 4987 girls) were extracted from a nationwide data. Age-sex-specific continuous functions describing percentile growth curves were constructed using natural cubic spline function (NCSF). Then, final stature prediction algorithm was developed and its validity was tested using longitudinal series of stature measurements on randomly selected 200 samples. Various accuracy measurements and analyses of errors between observed and predicted stature using NCSF growth curves were performed. Results: NCSF growth curves were shown to be excellent models in describing reference percentile stature growth curie over age. The prediction accuracy compared favorably with previous prediction models, even more accurate. The current prediction models gave more accurate results in girls than boys. Although the prediction accuracy was high, the error pattern of the validation data showed that in most cases, there were a lot of residuals with the same sign, suggestive of autocorrelation among them. Conclusion: More sophisticated growth prediction algorithm is warranted to enhance a more appropriate goodness of model fit for individual growth.

Synthesis and Characterization of Y2O3 Powders by a Modified Solvothermal Process

  • Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.78-81
    • /
    • 2012
  • $Y_2O_3$ nanomaterials have been widely used in transparent ceramics and luminescent devices. Recently, many studies have focused on controlling the size and morphology of $Y_2O_3$ in order to obtain better material performance. $Y_2O_3$ powders were prepared under a modified solvothermal condition involving precipitation from metal nitrates with aqueous ammonium hydroxide. The powders were obtained at temperatures at $250^{\circ}C$ after a 6h process. The properties of the $Y_2O_3$ powders were studied as a function of the solvent ratio. The synthesis of $Y_2O_3$ crystalline particles is possible under a modified solvothermal condition in a water/ethylene glycol solution. Solvothermal processing condition parameters including the pH, reaction temperature and solvent ratio, have significant effects on the formation, phase component, morphology and particle size of yttria powders. Ethylene glycol is a versatile, widely used, inexpensive, and safe capping organic molecule for uniform nanoparticles besides as a solvent. The characterization of the synthesized Y2O3 powders were studied by XRD, SEM (FE-SEM) and TG/DSC. An X-ray diffraction analysis of the synthesized powders indicated the formation of the $Y_2O_3$ cubic structure upon calcination. The average crystalline sizes and distribution of the synthesized $Y_2O_3$ powders was less than 2 um and broad, respectively. The synthesized particles were spherical and hexagonal in shape. The morphology of the synthesized powders changed with the water and ethylene glycol ratio. The average size and shape of the synthesized particles could be controlled by adjusting the solvent ratio.

Low Temperature Nanopowder Processing for Flexible CIGS Solar Cells (플렉시블 CIGS 태양전지 제조를 위한 저온 나노입자공정)

  • Park, Chinho;Farva, Umme;Krishnan, Rangarajan;Park, Jun Young;Anderson, Timothy J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.61.1-61.1
    • /
    • 2010
  • $CuIn_{1-x}-GaxSe_2$ based materials with direct bandgap and high absorption coefficient are promising materials for high efficiency hetero-junction solar cells. CIGS champion cell efficiency(19.9%, AM1.5G) is very close to polycrystalline silicon(20.3%, AM1.5G). A reduction in the price of CIGS module is required for competing with well matured silicon technology. Price reduction can be achieved by decreasing the manufacturing cost and by increasing module efficiency. Manufacturing cost is mostly dominated by capital cost. Device properties of CIGS are strongly dependent on doping, defect chemistry and structure which in turn are dependent on growth conditions. The complex chemistry of CIGS is not fully understood to optimize and scale processes. Control of the absorber grain size, structural quality, texture, composition profile in the growth direction is important to achieving reliable device performance. In the present work, CIS nanoparticles were prepared by a simple wet chemical synthesis method and their structural and optical properties were investigated. XRD patterns of as-grown nanopowders indicate CIS(Cubic), $CuSe_2$(orthorhombic) and excess selenium. Further, as-grown and annealed nanopowders were characterized by HRTEM and ICP-OES. Grain growth of the nanopowders was followed as a function of temperature using HT-XRD with overpressure of selenium. It was found that significant grain growth occurred between $300-400^{\circ}C$ accompanied by formation of ${\beta}-Cu_{2-x}Se$ at high temperature($500^{\circ}C$) consistent with Cu-Se phase diagram. The result suggests that grain growth follows VLS mechanism which would be very useful for low temperature, high quality and economic processing of CIGS based solar cells.

  • PDF

Prediction of Effective Wake Considering Propeller-Shear-Flow Interaction (선미후류-프로펠러 상호작용을 고려한 유효반류 추정법)

  • Chang-Sup,Lee;Jin-Tae,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.1-12
    • /
    • 1990
  • Interactions between a propeller and vortex system contained in a ship stern flow is treated theoretically. A new formulation to determine the effective velocity distributions is developed, which may be immediately applicable to the design and analysis of compound propulsors under the influence of severe vortical cross-flows around ship stern. An axisymmetric shear flow is represented by a system of ring vortices and the axial variation of the stream lines due to the action of propeller is represented by a cubic function. The strengths of ring vortices, which are varying along the stream lines, are determined by the conservation of angular momentum. Two simplified effective velocity models are proposed to confirm the theory. Sample calculations using the simplified models are made to compare with the results by other investigators.

  • PDF

Investigation of High Temperature Electrical Conductivity of CaO-partially Stabilized $ZrO_2$ (CaO에 의하여 부분 안정화된 $ZrO_2$의 고온 전기 전도도에 대한 연구)

  • 변수일
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.4
    • /
    • pp.213-224
    • /
    • 1979
  • The present work was undertaken: (1) to determine if CaO-partially stabilized $ZrO_2$ prepared by Hot Petroleum Drying Method would show better ionic conductor as an oxygen sensor in molten metals than that prepared by Oxide Wet Mixing Method and than CaO-fully stabilized $ZrO_2$, and (2) to understand the nature of conduction mechanism of CaO-partially stabilized $ZrO_2$ by a comparison of measured electrical conductivity data with theory on defect structure of pure monoclinic $ZrO_2$ and fully stabilized cubic $ZrO_2$. The DC electrical conductivity was measured by 3-probe technique and the AC electrical conductivity by 2-probe technique as a function of temperature in the range 973-1373 K and oxygen partial pressure in the range 10-1-10-25Mpa. The results of the experiments were as follows: 1. CaO-partially stabilized $ZrO_2$ prepared by Hot petroleum Drying Method showed at T=1094-1285 K and $Po_2$=10-7-10-25 MPa a nearly ionic conduction with 4 times higher conductivity than that prepared by Oxide Wet Mixing Method. 2. High-oxygen pressure conductivity tends toward a Po_2^{+1/5}-Po_2^{+1/6}$dependence. An analysis of possible defect structures suggests that CaO-partially stabilized $ZrO_2$ has an anti-Frenkel defect in which singly or doubly ionized oxygen interstitials and defect electrons predominate at T=1094-1285 K and $Po_2$=10-1-10-7MPa. 3. The activation energy for pure electron hole-conduction and ionic conduction of CaO-partially stabilized $ZrO_2$ was found to be 130 KJ/mol at T=973-1373 K, $Po_2$=2, 127 10-2 MPa(air) and 153KJ/mol at T=1094-1285 K respectively.

  • PDF

Practical designs for mixture component-process experiments (실용적인 혼합물 성분 공정변수 실험설계)

  • Lim, Yong-B.
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.3
    • /
    • pp.400-411
    • /
    • 2011
  • Process variables are factors in an experiment that are not mixture components but could affect the blending properties of the mixture ingredients. For example, the effectiveness of an etching solution which is measured as an etch rate is not only a function of the proportions of the three acids that are combined to form the mixture, but also depends on the temperature of the solution and the agitation rate. Efficient designs for the mixture components-process variables experiments depend on the mixture components-process variables model which is called a combined model. We often use the product model between the canonical polynomial model for the mixture and process variables model as a combined model. In this paper we propose three starting models for the mixture components-process variables experiments. One of the starting model we are considering is the model which includes product terms up to cubic order interactions between mixture effects and the linear & pure quadratic effect of the process variables from the product model. In this paper, we propose a method for finding robust designs and practical designs with respect to D-, G-, and I-optimality for the various starting combined models and then, we find practically efficient and robust designs for estimating the regression coefficients for those models. We find the prediction capability of those recommended designs in the case of three components and three process variables to be good by checking FDS(Fraction of Design Space) plots.

Kinematic Analysis of Marche Fente Motion in a Fleuret Attack Technique (펜싱 플러레 공격 기술중 마르쉬 팡트 동작의 운동학적 분석)

  • An, Sang-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.277-291
    • /
    • 2003
  • This study was designed to examine the kinematic factors in the phase during the marche fente motion. For this study, the subjects were 5 elite male fencing players. The direct linear transformation (DLT) method was used in calculating 3-D coordinate of the digitized body parts. The cubic spline function was used for smoothing and the kinematic data for displacement, velocity, angle variables were calculated for Kwon3d ver 2.1. And the following conclusions were drawn; 1. It show that the marche phase appeared to longer time than the pante phase In the performance time. For the fast attack, it showed that the subjects should be moving in a short stride width. 2. For a fast and stable movement posture in the marche phase, the vertical change of COG must be maintain the same position as possible, but all subjects appeared to decrease the COG because of a excessive the knee flection. 3. In the COG velocity change, all the subjects showed to the same change in both the marche and the fente phase. However in the attack extremity velocity, it increased velocity in order of upper arm, fore arm, and hand in the marche phase, but it showed different velocity among each subjects at the moment of stabbing. So that in order to do effective stabbing, they have to extend their upper extremity max and do faster the distal segment than the proximal segment. 4. It showed to take a fast and stable movement, because some subjects showed the big anteroposterior angle of the trunk flexed max shoulder angle and elbow angle of their attack arm and the other upper extremity.

Structural Properties of Nickel Manganite Thin Films Fabricated by Metal Organic Decomposition (금속유기분해법으로 제조한 니켈 망가나이트 박막의 구조적 특성)

  • Lee, Kui Woong;Jeon, Chang Jun;Jeong, Young Hun;Yun, Ji Sun;Nam, Joong Hee;Cho, Jeong Ho;Paik, Jong Hoo;Yoon, Jong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.226-231
    • /
    • 2014
  • Thin thermistor films of solutions with nickel and manganese oxides were prepared by metal-organic decomposition (MOD). The structural properties of the thin films were investigated as a function of annealing temperature. Field emission scanning electron microscope (FE-SEM) results indicated that the thin films had a thin thickness, smooth and dense surface. The crystallization temperature of $414.9^{\circ}C$ was confirmed from thermogavimetric-differential thermal analysis (TG-DTA) curve. A single phase of cubic spinel structure was obtained for the thin film annealed from $700^{\circ}C$ to $800^{\circ}C$, which was confirmed from the X-ray diffraction (XRD). From the selected area electron diffraction (SAED) in high resolution transmission electron microscope (HRTEM), the nano grains (2~3 nm) of spinel phase with (311) and (222) planes were detected for the thin film annealed at $500^{\circ}C$, which could be applicable to read-out integrated circuit (ROIC) substrate of the uncooled microbolometer with low processing temperature.

A Study on the Strategies to Extend the Borderline of University Campuses - Focused on Seoul National University - (대학캠퍼스 경계확장 전략 연구 - 서울대학교를 중심으로 -)

  • Park, Hoon
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.19 no.6
    • /
    • pp.25-36
    • /
    • 2012
  • University campuses have been developed along with the historical development of mankind in association with the characteristics of urban changes. In particular, regarding the master plan reflecting periodic characteristics, now is the time to grope for crucial roles today that we are pursuing international growth of universities. Also, with the development of cities, in terms of the aspects of campus development, various borderline extension strategies are explored due to the physical limitation. And with the program methods through the exchange with the local community, we are concretizing this through the formation of new campuses. Seoul National University, the subject of this paper, is groping for ways of extension through the SNU-Valley Project with its Gwanak campus. Along with this, it is looking for ways of cubic borderline extension by forming Siheung international campus. The conclusion drawn through above contents is as written below: First, universities located in cites have relatively more limitations in the extension of campus space along with the development of urban space changes. To overcome this, various ways like political or physical space extension strategies are being explored. Second, along with the physical strategies visually shown in suggesting university campus master plans, we can recognize the importance of suggesting vision through specialization strategies. Third, it is about the importance of improving relationship with the local community. With the approaches based on human resources and reasonable connection of space, this also plays roles in enhancing the urbanity of the campus. Fourth, we can see the aspects of campus' urban function enhancing. It is needed to connect urban context that a region has with environment and grope for ways to enhance centrality, connection, and accessibility in it.