• Title/Summary/Keyword: crystallization

Search Result 2,450, Processing Time 0.026 seconds

A study on the characteristics of MEM structure of $SrBi_2Ta_2O_9$ thin films by RE magnetron sputtering (RF 마그네트론 스퍼터링법에 의한 MFM 구조의 $SrBi_2Ta_2O_9$ 박막 특성에 관한 연구)

  • 이후용;최훈상;최인훈
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.136-143
    • /
    • 2000
  • $SrBi_2Ta_2O_9;(SBT)$ films were deposited on p-type Si(100) at room temperature by rf magnetron sputtering method to confirm the possibility of application of $Pt/SBT/Pt/Ti/SiO_2/Si$ structure (MFM) for destructive read out ferroelectric RAM (random access memory). Their structural characteristics with the various annealing times and Ar/$O_2$ gas flow ratios in sputtering were observed by XRD (X-ray diffractometer) and the surface morphologies were observed by FE-SEM (field emission scanning electron microscopy), and their electrical properties were observed by P-V (polarization-voltage measurement) and I-V (current-voltage measurement). The Ar/$O_2$ gas flow ratios of sputtering gas were changed from 1 : 4 to 4 : 1 and SBT thin films were deposited at room temperature. The films show (105), (110) peaks of SBT by XRD measurement. SBT thin films deposited at room temperature were crystallized by furnace annealing at 80$0^{\circ}C$ in oxygen atmosphere during either one hour or two hours. Among their electrical properties, P-V curves showed shaped hysteresis curves, but the SBT thin films showed the asymmetric ferroelectric properties in P-V curves. When Ar/$O_2$ gas flow ratios are 1 : 1, 2: 1, the leakage current density values of SBT thin films are good, those values of 3 V, 5 V, and 7 V are respectively $3.11\times10^{-8} \textrm{A/cm}^2$, $5\times10^{-8}\textrm{A/cm}^2$, $7\times10^{-8}\textrm{A/cm}^2$.After two hours of annealing time, their electrical properties and crystallization are improved.

  • PDF

Synthesis and Crystal Structure of Amorphous Calcium Carbonate by Gas-Liquid Reaction of System CaO-$C_2 H_5 OH$-$CO_2$ (CaO-$C_2 H_5 OH$-$CO_2$계의 기.액반응에 의한 비정질 탄산칼슘의 합성 및 결정구조)

  • Im, Jae-Seok;Im, Goeng
    • The Journal of Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.97-109
    • /
    • 2004
  • The synthesis and crystal structure of amorphous calcium carbonate obtained from gas-liquid reaction of CaO-$C_2 H_5 OH$-$CO_2$ system according to change of added amount of calcium oxide by blowing $CO_2$ gas and reaction time using ethanol and ethylene glycol were investigated by electric conductivity, X-ray diffraction, and scanning electron microscope. The powdery or gelatinous phases were prepared by passing $CO_2$ gas at a flow rate of 1$\ell$/min into the suspensions containing 10~40g of CaO in mixing solutions 900ml of $C_2 H_5 OH$- and 100ml of ethylene glycol. By rapid filtration and drying the both phases at $60^{\circ}C$ under reduced pressure, the phases converted to the spherical vaterite and amorphous phase. The stable phase of amorphous calcium carbonate(ACC) was formed in the region pH 7-9 but the formation regions of amorphous phase were remarkably affected by pH in the mother liquor. It seems that a part of ACC changed into chain calcite as an intermediate products. The initial reactants prior to the formation of precipitated calcium carbonate is ACC. And ACC is unstable in the aqueous solution and crystallizes finally to calcite by the through-solution reaction. Especially ACC was produced or gelatinous phase which precipitated from the reaction of CaO-$C_2 H_5 OH$-$CO_2$ system.

  • PDF

Time-relationship between deformation and metamorphism of the Paleozoic metasedimentary rocks of the north Sobaegsan massif in the Janggunbong area, Korea (장군봉지역 북부 소백산육괴의 고생대 변성퇴적암류에 대한 변형작용과 변성작용 사이의 상대적인 시간관계)

  • 강지훈;오세봉;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.190-206
    • /
    • 1998
  • The microstructures and time-relationship between deformation and growth of metamorphic minerals(metamorphism) of the Paleozoic metasedimentary rocks(Joseon Supergroup and Pyeongan Group) in the Janggunbong area at the central-south part in the North Sobaegsan Massif, Korea, have been analyzed in this paper. The first phase metamorphism (low-pressure type metamorphism), recognized as the crystallization of stack-type chloritoid and biotite and augen-type old andalusite, occurred under non-deformational condition before D1 deformation related to the formation of an E-W trending isocline-synclinal fold(Janggunbong fold) and associated its axial plane S1 foliation, and produced regional mineralogical zoning of E-W trend in the Paleozoic rocks. The second phase metamorphism(medium-pressure type metamorphism), related to the growth of staurolite and garnet porphyroblasts with straight or curved internal foliations(Si), occurred under non-deformational condition after D1 deformation related to the formation of E-W trending thrusts modifying the Janggunbong fold and during D2 deformation related to the formation of E-W trending Yecheon shear zone. This metamorphism also produced regional mineralogical zoning of E-W trend. After D2 deformation occurred the intrusion of Jurassic Chunyang granite and associated its contact metamorphism which crystallized patchy-type young andalusite and prismatic- or fibrous-type sillimanite and coarse-grained garnet. This metamorphism occurred under non-deformational condition before D3 deformation related to the formation of S3 crenulation cleavage and during early phase of D3 deformation, and formed narrow mineralogical zoning of N-S trend near Chunyang granite.

  • PDF

The Overview of Layered structures in Mafic - Ultramafic Macheon Intrusion (고철질-초고철질 마천관입암의 층상구조 개관)

  • Song, Yong-Sun;Kim, Dong-Yeon;Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.162-179
    • /
    • 2007
  • Macheon Layered Intrusion (MLI) which intruded into Precambrian gneiss complex of the northern Jirisan area, southeastern part of Youngnam (or Sobaeksan) Massif, is a layered mafic-ultramafic complex of Triassic age (ca. 223 Ma). The MLI is divided into Layered Series and Laminated Series. Layered Series is subdivided into Central Zone (Lower Zone) consisting of olivine gabbros and Peripheral Zone (Middle or Upper Zone) consisting of hornblende gabbros based on the type of cumulus texture and the main mafic phase. The Central Zone of Layered Series comprises thinly laminated olivine gabbros and uniform or thickly laminated coarse olivine gabbros which consist of mela-gabbro, troctolite, leuco-troctolite, and anorthositic rocks. Laminated Series is also subdivided into quartz-bearing biotite-pyroxene gabbros and homblende diorite and both have variable amount of interstitial quartz and microcline. Laminated series display moderately to slightly developed igneous lamination which is defined by the planar alignment of lath-shape plagioclases. Chilled margin of quartz-bearing biotite-pyroxene gabbro with surrounding Precambrian gneisses insists shallower intrusion of more felsic cognate magma evolved in the deep a little later. Rocks of Layered Series have orthocumulus to adcumulus olivine, adcumulus to intercumulus plagioclase, and intercumulus to heteradcumulus pyroxene and hornblende. Magmatic modally grading, folding, and cross-lamination are not rarely occurred in thinly layered rocks. These textural characteristics define main mechanisms of the formation of layered and laminated structure in mafic-ultramafic rocks of Macheon Layered Intrusion are gravity settling and in-situ crystallization associated with slumping and density current.

Magnetic Properties of Nanocrystalline $Fe_{76-x}Cu_1Mo_xSi_{14}B_9$(x=2,3) Alloys ($Fe_{76-x} Cu_1Mo_xSi_14B_9(x=2, 3)$ 초미세 결정합금의 자기적 특성)

  • Pi, W.K.;Noh, T.H.;Kim, H.J.;Kang, I.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.1
    • /
    • pp.12-16
    • /
    • 1991
  • The effect of annealing on the magnetic properties and the microstructures of the amorphous $Fe_{76-x}Cu_1Mo_xSi_{14}B_9$(x=2,3) alloys were investigated. When annealed at 500${^{\circ}C}$ for 1hr, $8{\sim}9{\times}10^3$ of the effective permeability and 3~4 A/m of the coercive force were achieved upon crystallization to $\alpha$-Fe phase. And the average diameter of the $\alpha$-Fe grains was about 20nm. For the nanovrystalline ferromagnets. the fine grain size is the important requirement to obtain a good soft magnetic property. In this work, in order to get the finer grain size of $\alpha$-Fe phase, two-step annealing treatment was given. That is, following the low-temperature at $400{^{\circ}C}$ for 1~3hr, the high-temperature annealing at $500{^{\circ}C}$ for 1hr was carried out. As the low-temperature annealing time increased, the effective permeability increased to $1.2{\sim}1.7{\times}10^4$ and the coercive force decreased to about 2 A/m. And the grain size was observed to be smaller than 10nm. The increased permeability and the decreased coercive force were attributed to the reduced average crystalline anisotropy by the refinement of $\alpha$-Fe(Si) grains.

  • PDF

Study on the Enhanced Specific Surface Area of Mesoporous Titania by Annealing Time Control: Gas Sensing Property (열처리 시간에 따른 메조기공 타이타니아의 비표면적 향상 연구: 가스센싱 특성 변화)

  • Hong, M.-H.;Park, Ch.-S.;Park, H.-H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • Mesoporous ceramic materials were applied in various fields such as adsorbent and gas sensor because of low thermal conductivity and high specific surface area properties. This structure could be divided into open-pore structure and closed-pore structure. Although closed-pore structure mesoporous ceramic materials have higher mechanical property than open-pore structure, it has a restriction on the application because the increase of specific surface area is limited. So, in this work, specific surface area of closed-pore structure $TiO_2$ was increased by anneal time. As increased annealing time, crystallization and grain growth of $TiO_2$ skeleton structured material in mesoporous structure induced a collapse and agglomeration of pores. Through this pore structural change, pore connectivity and specific surface area could be enhanced. After anneal for 24 hrs, porosity was decreased from 36.3% to 34.1%, but specific surface area was increased from $48m^2/g$ to $156m^2/g$. CO gas sensitivity was also increased by about 7.4 times due to an increase of specific surface area.

Measurement of Solubilities in the Ternary System NaCl + CaCl2 + H2O and KCl + CaCl2 + H2O at 50℃ (NaCl + CaCl2 + H2O 및 KCl + CaCl2 + H2O 삼성분계에 대한 50℃에서의 용해도 측정)

  • Yang, Ji-Min;Hou, Guang-Yue;Ding, Tian-Rong;Kou, Peng
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.3
    • /
    • pp.269-274
    • /
    • 2010
  • The solubility and the physicochemical property (refractive index) in the NaCl-$CaCl_2$-$H_2O$ and KCl-$CaCl_2$-$H_2O$ systems were determined at $50^{\circ}C$ and the phase diagrams and the diagrams of physicochemical property vs composition were plotted. One invariant point, two univariant curves, and two crystallization zones, corresponding to sodium Chloride (or potassium chloride), dihydrate ($CaCl_2{\cdot}2H_2O$) showed up in the phase diagrams of the ternary systems. The mixing parameters ${\theta}_{M,Ca}$ and ${\Psi}_{M,Ca,Cl}$ (M = Na or K) and equilibrium constant $K_{sp}$ were evaluated in NaCl-$CaCl_2-H_2O$ and KCl-$CaCl_2-H_2O$ systems by least-squares optimization procedure, in which the single-salt Pitzer parameters of NaCl, KCl and $CaCl_2$ ${\beta}^{(0)}$, ${\beta}^{(1)}$, ${\beta}^{(2)}$ and $C^{\Phi}$ were directly calculated from the literature. The results obtained were in good agreement with the experimental data.

Transport Coefficients and Effect of Corrosion Resistance for SFRC (강섬유 보강 콘크리트의 수송계수 및 부식저항효과)

  • Kim, Byoung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.867-873
    • /
    • 2010
  • This study investigated the corrosion properties of reinforced concrete with the addition of steel fibers. The transport properties of steel fiber-reinforced concrete such as permeable void, absorption by capillary action, water permeability and chloride diffusion were first measured to evaluate the relationship with the corrosion of steel rebar. Test results showed a slight increase on the compressive strength with the addition of steel fibers as well as considerable improvement of penetration resistance to mass transport of harmful materials into concrete. The addition of steel fibers in reinforced concrete accelerated the initiation of steel corrosion contrary to the expected results based on the measured transport properties. The NaCl ponding surface showed the spalling failure due to the corrosion expansion of steel fibers and the cut-surface around the steel rebar showed the localized steel fiber's corrosion. The wet-dry cycling with high chloride ions as well as high temperature seems to induce the increase of salt crystallization on the pores continually and the increased pressure with the steel fiber's corrosion on the pores caused the spalling failure on the exposed surface. The microcracking on the surface therefore accelerated the movement of water, chloride ions and oxygen into the embedded steel rebar. The mechanism affecting corrosion of embedded steel reinforcement with steel fibers in this study are not yet fully understood and require further study comprising of accurate experimental design to isolate the effect of steel fiber's potential mechanism on the corrosion process.

Electrical Properties of YMnO3 Thin Film by Sol-gel Process (졸-겔 공정에 의한 YMnO3 박막의 전기적 특성)

  • Kim, Eung-Soo;Kim, Beng-Gu;Kim, Yoo-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.511-516
    • /
    • 2002
  • Hexagonal $YMnO_3$ thin films were prepared from $Y(NO_3)_3{\cdot}5H_2O$ and $Mn(CH_3CO_2)_2{\cdot}4H_2O$ as starting materials on the Si(100) substrates by the sol-gel method. The crystal structure and the electrical properties of the $YMnO_3$ thin films were investigated as a function of heat treatment temperature, the amount of water(Rw) of hydrolysis and the addition of catalysis. The crystallization of the $YMnO_3$ thin film began at 700${\circ}C$ and completed at 800${\circ}C$ for 1 h. The c-axis (0001) preferred orientation of hexagonal $YMnO_3$ was detected for the $YMnO_3$ thin films with Rw=6 and that was decreased for the $YMnO_3$ thin films with Rw=1 and Rw=12. The crystallinity and preferred orientation of the $YMnO_3$ thin films were depended on the addition of acid and/or alkali catalysis, which, in turn, the preferred orientation of c-axis was decreased and the orthorhombic phase of $YMnO_3$ was detected to the specimens with the addition of catalysis. The $YMnO_3$ thin film with Rw=6 showed good leakage current density of $1.2{\times}10-8 A/cm^2$ at the applied voltage of 0.2V and the leakage current density was not changed drastically with applied voltage.

Phase transformation and magnetic properties of $Ni_xFe_{100-x}$ thin films deposited by a co-sputtering (동시 스퍼터링법으로 제조된 $Ni_xFe_{100-x}$ 박막의 상변화와 자기적 특성)

  • Kang, Dae-Sik;Song, Jong-Han;Nam, Joong-Hee;Cho, Jeong-Ho;Chun, Myoung-Pyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.6
    • /
    • pp.282-287
    • /
    • 2009
  • $Ni_xFe_{100-x}$ films with a thickness of about 100nm were deposited on Si(100) substrates at room temperature by a DC magnetron co-sputtering using Fe and Ni targets. Compositional, structural, electrical and magnetic properties of the films were investigated. $Ni_{67}Fe_{33}$, $Ni_{55}Fe_{45}$, $Ni_{50}Fe_{50}$, $Ni_{45}Fe_{55}$, $Ni_{40}Fe_{60}$ films are obtained by increasing the sputtering power of the Fe target. The films of x < 55 have BCC structure and show the phase transformation after annealing at the range of $300{\sim}450^{\circ}C$ for 2 h. On the other hand, the films of x < 50 have the mixed crystalline phases of BCC and FCC after the annealing treatment. The saturation magnetization was decreased initially by the phase transformation effect but then increased again after annealing at $450^{\circ}C$ due to the grain growth and crystallization of BCC phases.