• Title/Summary/Keyword: crystalline C film

Search Result 522, Processing Time 0.029 seconds

Ohmic contact formation of single crystalline 3C-SiC for high temperature MEMS applications (초고온 MEMS용 단결정 3C-SiC의 Ohmic Contact 형성)

  • Chung, Gwiy-Sang;Chung, Su-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.131-135
    • /
    • 2005
  • This paper describes the ohmic contact formation of single crystalline 3C-SiC thin films heteroepitaxially grown on Si(001) wafers. In this work, a TiW (Titanium-tungsten) film as a contact matieral was deposited by RF magnetron sputter and annealed with the vacuum and RTA (rapid thermal anneal) process respectively. Contact resistivities between the TiW film and the n-type 3C-SiC substrate were measured by the C-TLM (circular transmission line model) method. The contact phases and interface the TiW/3C-SiC were evaulated with XRD (X-ray diffraction), SEM (scanning electron microscope) and AES (Auger electron spectroscopy) depth-profiles, respectively. The TiW film annealed at $1000^{\circ}C$ for 45 sec with the RTA play am important role in formation of ohmic contact with the 3C-SiC substrate and the contact resistance is less than $4.62{\times}10^{-4}{\Omega}{\cdot}cm^{2}$. Moreover, the inter-diffusion at TiW/3C-SiC interface was not generated during before and after annealing, and kept stable state. Therefore, the ohmic contact formation technology of single crystalline 3C-SiC using the TiW film is very suitable for high temperature MEMS applications.

Heteroepitaxial Growth of Single 3C-SiC Thin Films on Si (100) Substrates Using a Single-Source Precursor of Hexamethyldisilane by APCVD

  • Chung, Gwiy-Sang;Kim, Kang-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.533-537
    • /
    • 2007
  • This paper describes the heteroepitaxial growth of single-crystalline 3C-SiC (cubic silicon carbide) thin films on Si (100) wafers by atmospheric pressure chemical vapor deposition (APCVD) at 1350 oC for micro/nanoelectromechanical system (M/NEMS) applications, in which hexamethyldisilane (HMDS, Si2(CH3)6) was used as a safe organosilane single-source precursor. The HMDS flow rate was 0.5 sccm and the H2 carrier gas flow rate was 2.5 slm. The HMDS flow rate was important in obtaing a mirror-like crystalline surface. The growth rate of the 3C-SiC film in this work was 4.3 μm/h. A 3C-SiC epitaxial film grown on the Si (100) substrate was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and Raman scattering, respectively. These results show that the main chemical components of the grown film were single-crystalline 3C-SiC layers. The 3C-SiC film had a very good crystal quality without twins, defects or dislocations, and a very low residual stress.

Magnetic Properties of Co-Cr(-Ta)/Si Bilayered Thin Film (Co-Cr(-Ta)/Si 이층막의 자기적 특성)

  • 김용진;박원효;금민종;최형욱;김경환;손인환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.281-286
    • /
    • 2002
  • In odder to investigate the magnetic properties of CoCr-based bilayered thin films on kind of underlayer, we introduced amorphous Si layer to Co-Cr(-Ta) magnetic layer as underlayer. First, we prepared CoCr and CoCrTa single layer using the Facing Targets Sputtering system to investigate theirs properties. It was revealed that with increasing the film thickness of CoCr, CoCrTa single layer, crystalline orientation and perpendicular coercivity was improved. The CoCrTa thin film showed bettor crystalline and magnetic characteristics than CoCr thin film. As a result of investigating magnetic properties of CoCr and CoCrTa magnetic layer on introducing the Si underlayer, perpendicular coercivity and saturation magnetization of CoCr/Si and CoCrTa/Si bilayered thin film were decreased due to the increased grain size and diffusion of Si atoms to magnetic layer. And they showed constant with increasing the film thickness of Si thin film. However, in case of CoCrTa/Si bilayered thin film, in-plane coercivity was controlled low at about 250Oe. The c-axis orientations of CoCr/si and CoCrTa/Si bilayered thin film showed a good crystalline characteristics as about $2^{\circ}$.

The Crystalline Quality of Si Films Prepared by Thermal- and Photo-CVD at Low Temperatures

  • Chung, Chan-Hwa;Rhee, Shi-Woo;Moon, Sang-Heup
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S1
    • /
    • pp.34-39
    • /
    • 1995
  • Various silicon films were prepared by thermal- and UV photo-CVD processes. The reactants were SiH4, Si2H6, SiH2F2, SIF4, and H2. Silicon films grown at temperatures below $500 ^{\circ}C$ were either amorphous or crystalline depending on the process conditions, and the growth rates ranged between 5 and $80\AA$min. Crystallinity of the film was improved even at $250^{\circ}C$ when the film was grown by photo-CVD using fluoro-silanes as the reactants. Analysis of the film by RBS, SIMS, XRD, and ex-situ IR indicated that substrate surface was contaminated by oxygen and other impurities when the reactants contained neither hydrogen nor fluoro-silnanes, but when fluoro-silanes were used as reactants the silicon film was highly crystalline.

  • PDF

Growth of Single Crystalline 3C-SiC Thin Films for High Power Devices by CVD (CVD에 의한 고전력 디바이스용 단결정 3C-SiC 박막 성장)

  • Chung, Gwiy-Sang;Shim, Jae-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.98-102
    • /
    • 2010
  • This paper describes that single crystalline 3C-SiC (cubic silicon carbide) thin films have been deposited on carbonized Si(100) substrates using hexamethyldisilane (HMDS, $Si_2(CH_3){_6}$) as a safe organosilane single precursor and a nonflammable mixture of Ar and $H_2$ gas as the carrier gas by APCVD at $1280^{\circ}C$. The deposition was performed under various conditions to determine the optimized growth condition. The crystallinity of the 3C-SiC thin film was analyzed by XRD (X-ray diffraction). The surface morphology was also observed by AFM (atomic force microscopy) and voids between SiC and Si interfaces were measured by SEM (scanning electron microscopy). Finally, residual strain and hall mobility was investigated by surface profiler and hall measurement, respectively. From these results, the single crystalline 3C-SiC film had a good crystal quality without defects due to viods, a low residual stress, a very low roughness.

Neutral Beam assisted Chemical Vapor Deposition at Low Temperature for n-type Doped nano-crystalline silicon Thin Film

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Yu, Seok-Jae;Lee, Bong-Ju;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.52-52
    • /
    • 2011
  • A novel deposition process for n-type nanocrystalline silicon (n-type nc-Si) thin films at room temperature has been developed by adopting the neutral beam assisted chemical vapor deposition (NBa-CVD). During formation of n-type nc-Si thin film by the NBa-CVD process with silicon reflector electrode at room temperature, the energetic particles could induce enhance doping efficiency and crystalline phase in polymorphous-Si thin films without additional heating on substrate; The dark conductivity and substrate temperature of P-doped polymorphous~nano crystalline silicon thin films increased with increasing the reflector bias. The NB energy heating substrate(but lower than $80^{\circ}C$ and increase doping efficiency. This low temperature processed doped nano-crystalline can address key problem in applications from flexible display backplane thin film transistor to flexible solar cell.

  • PDF

Effects of Deposition Parameters on TiN Film by Plasma Assisted Chemical Vapor Deposition(I) -Influence of Temperature on the TiN Deposition- (플라즈마 화학 증착법(PACVD)에 의한 TiN 증착시 증착변수가 미치는 영향(I) -증착온도를 중심으로-)

  • Shin, Y.S.;Ha, S.H.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.2 no.4
    • /
    • pp.1-10
    • /
    • 1989
  • To investigate the influence of temperature on the TiN film, it was deposited on the STC-3 steel and Si-wafer from $TiCl_4/N_2/H_2$ gas mixture by using the radio frequency plasma assisted chemical vapor deposition. The deposition was performed at temperature of $400^{\circ}C-500^{\circ}C$. The results showed that crystalline TiN film was deposited over $480^{\circ}C$, and all specimens showed the crystalline TiN X-ray diffraction peaks after vacuum heat treatment for 3 hrs, at $1000^{\circ}C$, $10^{-5}torr$. While the film thickness was increased above $480^{\circ}C$, it was decreased under $480^{\circ}C$ as temperature increased. And the contents of titanium were increased and it of chlorine were decreased as temperature increased. Because temperature increase was attributed to the increase in the density of TiN film, surface hardness of TiN film was increased with temperature.

  • PDF

Catalytic combustion type hydrogen micro gas sensor using thin film heater and nano crystalline SnO2 (나노 결정 SnO2와 백금 박막히터를 이용한 접촉연소식 마이크로 가스센서의 감응특성 연구)

  • Han, Sang-Do;Hong, Dae-Ung;Han, Chi-Hwan;Chun, Il-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.178-182
    • /
    • 2008
  • Planar type micro catalytic combustible gas sensor was developed by using nano crystalline $SnO_2$ Pt thin film as micro heater was deposited by thermal evaporation method on the alumina substrate. The thickness of the Pt heater was around 160 nm. The sensor showed high reliability with prominent selectivity against various gases(Co, $C_3H_8,\;CH_4$) at low operating temperature($156^{\circ}C$). The sensor with nano crystalline $SnO_2$ showed higher sensitivity than that without nano crystalline $SnO_2$. This can be explained by more active adsorption and oxidation of hydrogen by nano crystalline $SnO_2$ particles. The present planar-type catalytic combustible hydrogen sensor with nano crystalline $SnO_2$ is a good candidate for detection of hydrogen leaks.

High-Ic YBCO thick film fabricated by the MOD process (MOD 공정으로 제조된 고임계전류 YBCO 후막)

  • Shin, Geo-Myung;Song, Kyu-Jung;Moon, Seung-Hyun;Yoo, Sang-Im
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.6-9
    • /
    • 2008
  • We have investigated the MOD process successfully for the fabrication of the YBCO thick film on the $LaAlO_3$(001) single crystalline substrate. The cracking problem in YBCO thick film, a serious problem in the conventional TFA-MOD method, could be overcome with a careful control of precursor materials. Thus coating solution was prepared for the YBCO thick film by using fluorine-free precursor material. The precursor solutions were coated on the LAO(001) single crystalline substrate using the dip coating method, calcined at the temperature up to $500^{\circ}C$, and fired at various high temperatures for 2 h in a reduced oxygen atmosphere. Optimally processed YBCO thick film exhibited high critical current($I_c$) over 200 A/cm-width at 77K in self-field.

Preparation of Diamond Thin film for Electric Device and Crystalline Growth (전자 디바이스용 다이아몬드 박막의 제조 및 결정성장 특성)

  • Kim, Gru-Sik;Park, Soo-Gil;Son, Won-Keun;Fujishiama, Akira
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1720-1723
    • /
    • 2000
  • Boron doped conducting diamond thin film were grown on Si substrate by microwave plasma chemical vapor deposition from a gaseous feed of hydrogen, acetone/methanol and solid boron. The doping level of boron was controlled from 0ppm to $10^4$ppm (B/C). The Si substrate was tilted ca. 10$^{\circ}$ to make Si substrate have different height and temperature. Experimental results show that same condition but different temperature of Si substrate by height made different crystalline of diamond thin film. There were appeared 3$\sim$4 step of different crystalline morphology of diamond. To characterize the boron-doped diamond thin film, Raman spectroscopy was used for identification of crystallinity. To survey surface morphology, microscope was used. Grain size was changed gradually by different temperature due to different height. The Raman spectrum of film exhibited a sharp peak at 1334$cm^{-1}$, which is characteristic of crystalline diamond. The lower position of diamond film position, the more non-diamond component peak appeared near 1550$cm^{-1}$.

  • PDF