• Title/Summary/Keyword: crystal violet staining

Search Result 42, Processing Time 0.025 seconds

Isolation and Characterization of Halophilic Kocuria salsicia Strains from Cheese Brine

  • Youn, Hye-Young;Seo, Kun-Ho
    • Food Science of Animal Resources
    • /
    • v.42 no.2
    • /
    • pp.252-265
    • /
    • 2022
  • Kocuria salsicia can survive in extreme environments and cause infections, including catheter-related bacteremia, in humans. Here, we investigated and evaluated the characteristics of nine K. salsicia strains (KS1-KS9) isolated from cheese brine from a farmstead cheese-manufacturing plant in Korea from June to December, 2020. Staphylococcus aureus American Type Culture Collection (ATCC) 29213 was used as a positive control in the growth curve analysis and biofilm-formation assays. All K. salsicia isolates showed growth at 15% salt concentration and temperatures of 15℃, 25℃, 30℃, 37℃, and 42℃. KS6 and KS8 showed growth at 5℃, suggesting that they are potential psychrotrophs. In the biofilm-formation analysis via crystal violet staining, KS6 exhibited the highest biofilm-forming ability at various temperatures and media [phosphate buffered saline, nutrient broth (NB), and NB containing 15% sodium chloride]. At 25℃ and 30℃, KS3, KS6, and KS8 showed higher biofilm-forming ability than S. aureus ATCC 29213. The antimicrobial resistance of the isolates was evaluated using the VITEK® 2 system; most isolates were resistant to marbofloxacin and nitrofurantoin (both 9/9, 100%), followed by enrofloxacin (7/9, 77.8%). Five of the nine isolates (5/9, 55.6%) showed multidrug resistance. Our study reports the abilities of K. salsicia to grow in the presence of high salt concentrations and at relatively low temperatures, along with its multidrug resistance and tendency to form biofilms.

Isolation and characterization of a lytic Salmonella Typhimurium-specific phage as a potential biofilm control agent

  • Su-Hyeon Kim;Mi-Kyung Park
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.42-51
    • /
    • 2023
  • This study aimed to characterize a lytic Salmonella Typhimurium-specific (ST) phage and its biofilm control capability against S. Typhimurium biofilm on polypropylene surface. ST phage was isolated, propagated, and purified from water used in a slaughterhouse. The morphology of ST phage was observed via transmission electron microscopy. Its bactericidal effect was evaluated by determining bacterial concentrations after the phage treatment at various multiplicities of infection (MOIs) of 0.01, 1.0, and 100. Once the biofilm was formed on the polypropylene tube after incubation at 37℃ for 48 h, the phage was treated and its antibiofilm capability was determined using crystal violet staining and plate count method. The phage was isolated and purified at a final concentration of ~11 log PFU/mL. It was identified as a myophage with an icosahedral head (~104 nm) and contractile tail (~90-115 nm). ST phage could significantly decrease S. Typhimurium population by ~2.8 log CFU/mL at an MOI of 100. After incubation for 48 h, biofilm formation on polypropylene surface was confirmed with a bacterial population of ~6.9 log CFU/cm2. After 1 h treatment with ST phage, the bacterial population in the biofilm was reduced by 2.8 log CFU/cm2. Therefore, these results suggest that lytic ST phage as a promising biofilm control agent for eradicating S. Typhimurium biofilm formed on food contact surfaces.

Antitumor Effect of an Adenoviral Cytosine Deaminase/Thymidine Kinase Fusion Gene in C6 Glioma Cells (아데노 바이러스 Cytosine Deaminase/Thymidine Kinase 융합 유전자의 항 종양효과)

  • Kim, Young Woo;Choi, Jae Young;Chang, Jin Woo;Park, Yong Gou;Chung, Sang Sup
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.sup1
    • /
    • pp.13-19
    • /
    • 2001
  • Objective : We investigated the feasibility of a double suicide gene/prodrug therapy, involving direct introduction of the herpes simplex virus Type 1 thymidine kinase(TK) gene and the Escherichia coli cytosine deaminase(CD) gene, via a recombinant adenoviral vector and ganciclovir(GCV) and/or 5-fluorocytosine(5-FC) treatment, in C6 glioma cells. Methods : Efficient gene transfer and transduction of C6 glioma cells via a recombinant adenovirus were evaluated by infecting cells with adenovirus bearing the ${\beta}$-galactosidase gene and then staining cells with 5-bromo-4-chloro-3-indolyl-13-D-galactoside. CD/TK expression in cells infected with adenovirus bearing the CD/TK gene(ad-CD/TK) was examined by immunoblotting analysis. For in vitro cytotoxicity experiments, the cells were infected with ad-CD/TK or ad-${\Delta}E1$(as a control). After addition of a variety of concentrations of GCV and 5-FU, either separately or in combination, cell viability was determined by staining the cells with crystal violet solution 6 days after infection. Result : C6 glioma cells were efficiently transduced with recombinant adenoviral vector at multiplicities of infection of 200 or more. In vitro cytotoxicity of GCV and/or 5-FC, either alone or in combination, was exclusively observed in the cells transduced with ad-CD/TK. Obvious cytotoxicity(>50% inhibition) was observed in the presence of 5-FC at concentrations greater than 30ug/ml or GCV at concentrations greater than 0.3ug/ml at a multiplicity of infection of 100. Additionally, cytotoxicity in the presence of both GCV and 5-FC was greater than that after sinlge-prodrug treatments, indicating additive effects of the prodrug treatments. Conclusion : The administration of a double-suicide gene/prodrug therapy might have great potential in the treatment of brain tumors.

  • PDF

THE EFFECT OF STATIC MAGNETIC FIELDS ON MOLECULAR AND CELLULAR ACTIVITIES (정자기장이 효소와 세포 활성에 미치는 영향)

  • Park, Jae-Gu;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.27 no.6 s.65
    • /
    • pp.929-941
    • /
    • 1997
  • Optimal force for orthodontic treatment is the force that produces a rapid rate of tooth movement without discomfort to the Patient or ensuing tissue damage. Recently considerable interest has been generated in the application of magnets as a way to obtain an optimal force. The purpose of the present study was to investigate the effect of static magnetic fields of Sm-Co magnets on molecular and cellular activities. The distance of erythrocyte sedimentation was measured directly, and the activities and the syntheses of $Fe^{2+}$-related enzymes (catalase and NO synthase) and non $Fe^{2+}$-related enzyme (lactic dehydrogenase) were assayed by the spectrophotometer. The growth and the proliferation of osteoblast-like cells $MC_3T_3-E_1$ were determined by the crystal violet staining and the ${^3}H$-thymidine incorporation. The erythrocytes were exposed to the pole face flux density of 1,400 G (gauss), and the enzymes and osteoblast-like cells $MC_{3}T_3-E_1$ were exposed to the flux density of 7,000 G. The results obtained were as follows: 1. The distance of sedimentation of erythrocyte was not affected by the static magnetic fields. 2. The activities of catalase and lactic dehydrogenase were not affected by the static magnetic fields. 3. The intracellular syntheses of NO synthase and lactic dehydrogenase were not affected by the static magnetic fields. 4. The growth and the proliferation of cultured osteoblast-like cells $MC_{3}T_3-E_1$ were not affected by the static magnetic fields. These results suggested that the molecular and cellular activities were not significantly influenced by the static magnetic fields.

  • PDF

Antibacterial effect of electrolyzed water on Streptococcus mutans (전기분해수소수의 Streptococcus mutans에 대한 항균효과)

  • Kim, Ji-Hye;Youn, Ha-Young;Kim, Eun-Kyong;Lee, Young-Eun;Jang, Ji-Eon;Song, Keun-Bae
    • Journal of Korean society of Dental Hygiene
    • /
    • v.21 no.5
    • /
    • pp.527-533
    • /
    • 2021
  • Objectives: Electrolyzed water has been proven to have antibacterial effects against various microorganisms. However, there are only a few studies about effects of electrolyzed water on oral bacteria. The purpose of this study was to examine the antibacterial effect of electrolyzed water on Streptococcus mutans in vitro. Methods: S. mutans KCOM 1054 was treated with electrolyzed water for 1 or 3 minutes and plated on Mitis Salivarius agar with 15% sucrose and bacitracin. After incubation for 48 hours, colony forming units (CFU) were counted, and dental plaque was quantified by crystal violet staining. Results: The growth of S. mutans was significantly inhibited by electrolyzed water (p<0.001). In addition, the dental plaque formation by S. mutans was decreased in a time-dependent manner by exposure to electrolyzed water (p<0.001). Conclusions: Our results suggest that electrolyzed water can effectively prevent dental caries by inhibiting growth of (and the formation of dental plaque by) S. mutans.

Protective Effect of Jinmu-tang on $H_2O_2$-induced Cell Death in C6 Glial Cells (진무탕(眞武湯)이 $H_2O_2$로 유도된 C6 Glial 세포사에 미치는 영향)

  • Choi, Jung-Hoon;Shin, Yong-Jeen;Ha, Ye-Jin;Cho, Mun-Young;You, Ju-Yeon;Lee, Soong-In;Shin, Sun-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.33 no.3
    • /
    • pp.272-283
    • /
    • 2012
  • Objectives : The purpose of this study was to investigate the mechanism of protective effect of Jinmu-tang (JMT, Zhenwu-tang) extract on $H_2O_2$-induced cell death in C6 glial cells. Methods : Cultured C6 glial cells of white mice were pretreated with JMT extract and exposed to $H_2O_2$ for inducing cell death. We measure the cell viability by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and investigate the cell morphology using a light microscope after crystal violet (CV) staining. Reactive oxygen species (ROS) formation was analyzed using a flow cytometer and a fluorescent microscope after staining with 2'7'-dichlorofluorescein diacetate (DCF-DA). DNA fragmentation was analyzed using a flow cytometer after propidium iodide (PI) staining and nuclei morphology was investigated using a fluorescent microscope after 2-[4-amidinophenyl]-6-indo-lecarbamidine dihydrochloride (DAPI) staining. We analyzed expression of Bax, processing of procaspase-3 and poly (ADP-ribose) polymerase (PARP), and activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) by western blot method. Tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) secretion was analyzed using Quantikine kit. Results : We determined the elevated cell viability by JMT extract on $H_2O_2$-induced C6 glial cell death. ROS formation, DNA fragmentation, $I{\kappa}B{\alpha}$ phosphorylation, NF-${\kappa}B$ activation, and secretion of TNF-${\alpha}$ induced by $H_2O_2$ are inhibited by JMT extract pre-treatment. JMT extract inhibits Bax expression, processing of caspase-3 and PARP that are critical biochemical markers of apoptotic cell death. Conclusions : These results suggest that JMT extract has a protective effect on $H_2O_2$-induced C6 glial cell death in various pathways.

Effects of Natural Products on the Induction of NAD(P)H: Quinone Reductase in Hepa 1c1c7 Cells for the Development of Cancer Chemopreventive Agents

  • Kim, Young-Mi;Chang, Il-Moo;Mar, Woong-Chon
    • Natural Product Sciences
    • /
    • v.3 no.2
    • /
    • pp.81-88
    • /
    • 1997
  • NAD(P)H:quinone reductase (QR) is one of the protective phase II enzymes against toxicity that accomplishes the capacity of detoxification by modulating the effects of mutagens and carcinogens. The detoxification mechanism is that quinone reductase promotes the 2-electron reduction of quinones to hydroquinones which are less reactive. This study is to search new inducers of quinone reductase from natural products, which can be used as cancer chemopreventive agents. Plant extracts were evaluated by using quinone reductase generating system With Hepa 1c1c7 murine hepatoma cell lines for enzyme inducing properties and crystal violet staining method for the measurement of cytotoxicity provoked. We have tested approximately 106 kinds of natural products after partition into n-hexane, ethyl acetate and aqueous layers from 100% methanol extracts of natural products. The ethyl acetate fractions of Vitex rotundifolia $(fruits,\;2FC:\;12.7\;{\mu}g/ml)$, Cnidium officinale $(aerial\;parts,\;2FC:\;10.5\;{\mu}g/ml)$, Chrysanthemum sinese $(flowers,\;2FC:\;17.4{\mu}g/ml)$ and the hexane fractions of Angelica gigas $(roots,\;2FC:\;13.2\;{\mu}g/ml)$, Smilax china $(roots,\;2FC:\;l1.9\;{\mu}g/ml)$, Sophora flavescens $(roots,\;2FC:\;16.3\;{\mu}g/ml)$ revealed the significant induction of quinone reductase in a murine hepatic Hepa 1c1c7 cell culture system.

  • PDF

Quorum Quenching Bacteria Isolated from the Sludge of a Wastewater Treatment Plant and Their Application for Controlling Biofilm Formation

  • Kim, A-Leum;Park, Son-Young;Lee, Chi-Ho;Lee, Chung-Hak;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1574-1582
    • /
    • 2014
  • Bacteria recognize changes in their population density by sensing the concentration of signal molecules, N-acyl-homoserine lactones (AHLs). AHL-mediated quorum sensing (QS) plays a key role in biofilm formation, so the interference of QS, referred to as quorum quenching (QQ), has received a great deal of attention. A QQ strategy can be applied to membrane bioreactors (MBRs) for advanced wastewater treatment to control biofouling. To isolate QQ bacteria that can inhibit biofilm formation, we isolated diverse AHL-degrading bacteria from a laboratory-scale MBR and sludge from real wastewater treatment plants. A total of 225 AHL-degrading bacteria were isolated from the sludge sample by enrichment culture. Afipia sp., Acinetobacter sp. and Streptococcus sp. strains produced the intracellular QQ enzyme, whereas Pseudomonas sp., Micrococcus sp. and Staphylococcus sp. produced the extracellular QQ enzyme. In case of Microbacterium sp. and Rhodococcus sp., AHL-degrading activities were detected in the whole-cell assay and Rhodococcus sp. showed AHL-degrading activity in cell-free lysate as well. There has been no report for AHL-degrading capability in the case of Streptococcus sp. and Afipia sp. strains. Finally, inhibition of biofilm formation by isolated QQ bacteria or enzymes was observed on glass slides and 96-well microtiter plates using crystal violet staining. QQ strains or enzymes not only inhibited initial biofilm development but also reduced established biofilms.

An in vitro model of Fusobacterium nucleatum and Porphyromonas gingivalis in single- and dual-species biofilms

  • Tavares, Livia Jacovassi;Klein, Marlise Inez;Panariello, Beatriz Helena Dias;de Avila, Erica Dorigatti;Pavarina, Ana Claudia
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.1
    • /
    • pp.12-21
    • /
    • 2018
  • Purpose: The goal of this study was to develop and validate a standardized in vitro pathogenic biofilm attached onto saliva-coated surfaces. Methods: Fusobacterium nucleatum (F. nucleatum) and Porphyromonas gingivalis (P. gingivalis) strains were grown under anaerobic conditions as single species and in dual-species cultures. Initially, the bacterial biomass was evaluated at 24 and 48 hours to determine the optimal timing for the adhesion phase onto saliva-coated polystyrene surfaces. Thereafter, biofilm development was assessed over time by crystal violet staining and scanning electron microscopy. Results: The data showed no significant difference in the overall biomass after 48 hours for P. gingivalis in single- and dual-species conditions. After adhesion, P. gingivalis in single- and dual-species biofilms accumulated a substantially higher biomass after 7 days of incubation than after 3 days, but no significant difference was found between 5 and 7 days. Although the biomass of the F. nucleatum biofilm was higher at 3 days, no difference was found at 3, 5, or 7 days of incubation. Conclusions: Polystyrene substrates from well plates work as a standard surface and provide reproducible results for in vitro biofilm models. Our biofilm model could serve as a reference point for studies investigating biofilms on different surfaces.

Inhibitory effects of Coptis chinensis extract on the growth and biofilm formation of Streptococcus mutans and Streptococcus sobrinus

  • Kim, Si Yeong;Song, Yuri;Lee, Hyun Ah;Na, Hee Sam;Jung, Chul Jong;Bek, Gyung Yun;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.143-151
    • /
    • 2020
  • Streptococcus mutans and Streptococcus sobrinus play important roles in dental caries. Coptis chinensis is a natural product with antimicrobial activity against enterobacteria; however, its effects on oral streptococci are still unknown. Therefore, the effects of C. chinensis on the growth and biofilm formation of the representative cariogenic bacteria S. mutans and S. sobrinus were investigated for the possible use of C. chinensis as an anticaries agent. The C. chinensis extract was diluted with sterile distilled water, and 0.1-2.5% of the extract was used in the experiment. The effects of the C. chinensis extract on the growth and glucan formation of S. mutans and S. sobrinus were measured by viable cell counting and spectrophotometry at 650 nm absorbance, respectively. Crystal violet staining was also carried out to confirm the C. chinensis extract's inhibitory effect on biofilm formation. The C. chinensis extract significantly inhibited the growth of S. mutans and S. sobrinus at concentrations of ≥ 0.3% as compared with the control group. The viable cell count of colonies decreased by 1.7-fold and 1.2-fold at 2.5% and 1.25%, respectively, compared with the control group. The biofilm formation of S. mutans and S. sobrinus was inhibited by > 20-fold at C. chinensis extract concentrations of ≥ 1.25% as compared with the control group. In summary, the C. chinensis extract inhibited the growth and biofilm and glucan formation of S. mutans and S. sobrinus. Therefore, C. chinensis might be a potential candidate for controlling dental caries.