DOI QR코드

DOI QR Code

Inhibitory effects of Coptis chinensis extract on the growth and biofilm formation of Streptococcus mutans and Streptococcus sobrinus

  • Kim, Si Yeong (Department of Oral Microbiology, School of Dentistry, Pusan National University) ;
  • Song, Yuri (Department of Oral Microbiology, School of Dentistry, Pusan National University) ;
  • Lee, Hyun Ah (Department of Oral Microbiology, School of Dentistry, Pusan National University) ;
  • Na, Hee Sam (Department of Oral Microbiology, School of Dentistry, Pusan National University) ;
  • Jung, Chul Jong (Department of Okchundang Research Institute) ;
  • Bek, Gyung Yun (Department of Okchundang Research Institute) ;
  • Chung, Jin (Department of Oral Microbiology, School of Dentistry, Pusan National University)
  • Received : 2020.02.18
  • Accepted : 2020.12.03
  • Published : 2020.12.31

Abstract

Streptococcus mutans and Streptococcus sobrinus play important roles in dental caries. Coptis chinensis is a natural product with antimicrobial activity against enterobacteria; however, its effects on oral streptococci are still unknown. Therefore, the effects of C. chinensis on the growth and biofilm formation of the representative cariogenic bacteria S. mutans and S. sobrinus were investigated for the possible use of C. chinensis as an anticaries agent. The C. chinensis extract was diluted with sterile distilled water, and 0.1-2.5% of the extract was used in the experiment. The effects of the C. chinensis extract on the growth and glucan formation of S. mutans and S. sobrinus were measured by viable cell counting and spectrophotometry at 650 nm absorbance, respectively. Crystal violet staining was also carried out to confirm the C. chinensis extract's inhibitory effect on biofilm formation. The C. chinensis extract significantly inhibited the growth of S. mutans and S. sobrinus at concentrations of ≥ 0.3% as compared with the control group. The viable cell count of colonies decreased by 1.7-fold and 1.2-fold at 2.5% and 1.25%, respectively, compared with the control group. The biofilm formation of S. mutans and S. sobrinus was inhibited by > 20-fold at C. chinensis extract concentrations of ≥ 1.25% as compared with the control group. In summary, the C. chinensis extract inhibited the growth and biofilm and glucan formation of S. mutans and S. sobrinus. Therefore, C. chinensis might be a potential candidate for controlling dental caries.

Keywords

References

  1. Categorical data by Korean Ministry of Health and Welfare [Internet]. Sejong: MOHW; [cited 2019 Jun 2]. Available from: http://www.mohw.go.kr/react/jb/sjb1101vw.jsp?SEQ=89&MENU_ID=03320101&page=1&PAR_MENU_ID=03#
  2. Yoo YK, Ro JS, Kim JS, Chang KW. The antibacterial effects of some propolis constituents against S. mutans, Lactobacilli and Actinomyces. J Korean Acad Oral Health 1996;20:65-74.
  3. Hamada S, Koga T, Ooshima T. Virulence factors of Streptococcus mutans and dental caries prevention. J Dent Res 1984;63:407-11. doi: 10.1177/00220345840630031001.
  4. Kang SY, An SY, Lee MW, Kwon SK, Lee DH, Jeon BH, Kim KJ, You YO. Effects of aconitum koreanum extract on the growth, acid production, adhesion and insoluble glucan synthesis of Streptococcus mutans. J Physiol Pathol Korean Med 2015;29:27-32. doi: 10.15188/kjopp.2015.02.29.1.27.
  5. Chen CP, Lin CC, Namba T. Screening of Taiwanese crude drugs for antibacterial activity against Streptococcus mutans. J Ethnopharmacol 1989;27:285-95. doi: 10.1016/0378-8741(89)90003-2.
  6. Sakanaka S, Kim M, Taniguchi M, Yamamoto T. Antibacterial substances in Japanese green tea extract against Streptococcus mutans, a cariogenic bacterium. Agric Biol Chem 1989;53:2307-11. doi: 10.1271/bbb1961.53.2307.
  7. Kubo I, Muroi H, Himejima M. Antimicrobial activity of green tea flavor components and their combination effects. J Agric Food Chem 1992;40:245-8. doi: 10.1021/jf00014a015.
  8. Otake S, Makimura M, Kuroki T, Nishihara Y, Hirasawa M. Anticaries effects of polyphenolic compounds from Japanese green tea. Caries Res 1991;25:438-43. doi: 10.1159/000261407.
  9. Steinberg D, Kaine G, Gedalia I. Antibacterial effect of propolis and honey on oral bacteria. Am J Dent 1996;9:236-9.
  10. Chang KW, Oh IS, Lee JH. Effect of dietary erythritol supplemented with chitosan, extracts of Akebia and extracts of Ishige on the growth of mutans streptococci. J Korean Acad Oral Health 1997;21:545-52.
  11. Chang KW, Kang DO, Kim HG. Antibacterial effect and adsorption inhibition of oral streptococci to saliva- coated hydroxyapatite beads with Akebia quinata extract. J Korean Acad Oral Health 1997;21:675-84.
  12. Jang BS, Son SH, Chung CP, Bae KH. The effects of honokiol and magnolol on the antimicrobial, bacterial collagenase activity, cytotoxicity and cytokine production. J Periodontal Implant Sci 1993;23:145-58.
  13. Bae KH. The antibacterial activites of components isolated from the stem bark of Magnolia Obovota against a cariogenic bacterium, Streptococcus mutans OMZ 176. Symp Org Chem Abstr 1987;176:34.
  14. Shin KH, Yang KH, Choi NK, Kim SM, Oh JS. The effect of xylitol on the lactose fermentation of Streptococcus. J Korean Acad Pediatr Dent 2004;31:202-11.
  15. de Groot AC. Propolis: a review of properties, applications, chemical composition, contact allergy, and other adverse effects. Dermatitis 2013;24:263-82. doi: 10.1097/DER.0000000000000011.
  16. Schumer W. Adverse effects of xylitol in parenteral alimentation. Metabolism 1971;20:345-7. doi: 10.1016/0026-0495(71)90096-5.
  17. Abshenas J, Babaei H, Zare MH, Allahbakhshi A, Sharififar F. The effects of green tea (Camellia sinensis) extract on mouse semen quality after scrotal heat stress. Vet Res Forum 2011;2:242-7.
  18. Poivre M, Duez P. Biological activity and toxicity of the Chinese herb Magnolia officinalis Rehder & E. Wilson (Houpo) and its constituents. J Zhejiang Univ Sci B 2017;18:194-214. doi: 10.1631/jzus.B1600299.
  19. Jang GH, Ahn BY, Oh SH, Choi DS, Kwon YJ. Anticariogenic effects of Coptis chinensis Franch extract. Korean J Food Sci Technol 2000;32:1396-402.
  20. National Institute of Food and Drug Safety Evaluation [Internet]. Cheongju: National Institute of Food and Drug Safety Evaluation; 2018 [cited 2018 Dec 16]. Available from: https://www.nifds.go.kr/brd/m_184/view.do?seq=13
  21. Muluye RA, Bian Y, Alemu PN. Anti-inflammatory and antimicrobial effects of heat-clearing Chinese herbs: a current review. J Tradit Complement Med 2014;4:93-8. doi: 10.4103/2225-4110.126635.
  22. Cernakova M, Kostalova D. Antimicrobial activity of berberine--a constituent of Mahonia aquifolium. Folia Microbiol (Praha) 2002;47:375-8. doi: 10.1007/BF02818693.
  23. Freile ML, Giannini F, Pucci G, Sturniolo A, Rodero L, Pucci O, Balzareti V, Enriz RD. Antimicrobial activity of aqueous extracts and of berberine isolated from Berberis heterophylla. Fitoterapia 2003;74:702-5. doi: 10.1016/s0367-326x(03)00156-4.
  24. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999;12:564-82. doi: 10.1128/CMR.12.4.564.
  25. Zhen Z, Chang B, Li M, Lian FM, Chen L, Dong L, Wang J, Yu B, Liu WK, Li XY, Qin PJ, Zhang JH, Tong XL. Anti-diabetic effects of a Coptis chinensis containing new traditional Chinese medicine formula in type 2 diabetic rats. Am J Chin Med 2011;39:53-63. doi: 10.1142/S0192415X11008646.
  26. Hung TM, Lee JP, Min BS, Choi JS, Na M, Zhang X, Ngoc TM, Lee I, Bae K. Magnoflorine from coptidis rhizoma protects high density lipoprotein during oxidant stress. Biol Pharm Bull 2007;30:1157-60. doi: 10.1248/bpb.30.1157.
  27. Ahn DK. Iiiustrated book of Korean medicinal herbs. Seoul: Kyohaksa; 1998.
  28. Liu S, Zhang X, Qiu F, Miao P, Shen S, Zhu L, Zeng J, Jiang J. Metabolic interaction of the active constituents of coptis chinensis in human liver microsomes. Evid Based Complement Alternat Med 2015;2015:802903. doi: 10.1155/2015/802903.
  29. Li C, Huang P, Wong K, Xu Y, Tan L, Chen H, Lu Q, Luo C, Tam C, Zhu L, Su Z, Xie J. Coptisine-induced inhibition of Helicobacter pylori: elucidation of specific mechanisms by probing urease active site and its maturation process. J Enzyme Inhib Med Chem 2018;33:1362-75. doi: 10.1080/14756366.2018.1501044.
  30. Tan L, Li C, Chen H, Mo Z, Zhou J, Liu Y, Ma Z, Xu Y, Yang X, Xie J, Su Z. Epiberberine, a natural protoberberine alkaloid, inhibits urease of Helicobacter pylori and jack bean: susceptibility and mechanism. Eur J Pharm Sci 2017;110:77-86. doi: 10.1016/j.ejps.2017.02.004.
  31. Zhou JT, Li CL, Tan LH, Xu YF, Liu YH, Mo ZZ, Dou YX, Su R, Su ZR, Huang P, Xie JH. Inhibition of helicobacter pylori and its associated urease by Palmatine: investigation on the potential mechanism. PLoS One 2017;12:e0168944. doi: 10.1371/journal.pone.0168944.
  32. Kuramitsu HK, He X, Lux R, Anderson MH, Shi W. Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 2007;71:653-70. doi: 10.1128/MMBR.00024-07.
  33. Kim HE. Change of paradigms in caries-associated bacteria in the caries process: ecological perspectives. J Dent Hyg Sci 2014;14:87-93.
  34. Pratt LA, Kolter R. Genetic analyses of bacterial biofilm formation. Curr Opin Microbiol 1999;2:598-603. doi: 10.1016/s1369-5274(99)00028-4.
  35. Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol 2002;56:187-209. doi: 10.1146/annurev.micro.56.012302.160705.
  36. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 2001;358:135-8. doi: 10.1016/s0140-6736(01)05321-1.
  37. Kim KJ, Park BI, Min JH, Chae MS, Lim JY, Son HJ, Lee GH, An SY, Jeon BH, Choi NY, You YO. Inhibitory effects of radix Pulsatillae extract on insoluble glucan synthesis and adhesion of Streptococcus mutans. J Physiol Pathol Korean Med 2016;30:27-32. doi: 10.15188/kjopp.2016.02.30.1.27.
  38. Rozen R, Bachrach G, Bronshteyn M, Gedalia I, Steinberg D. The role of fructans on dental biofilm formation by Streptococcus sobrinus, Streptococcus mutans, Streptococcus gordonii and Actinomyces viscosus. FEMS Microbiol Lett 2001;195:205-10. doi: 10.1111/j.1574-6968.2001.tb10522.x.