• Title/Summary/Keyword: crystal modification

Search Result 141, Processing Time 0.021 seconds

A Study on the Ultrasonic Nano Crystal Surface Modification(UNSM) Technology and It's Application (초음파 나노표면개질기술의 특성과 활용방안 연구)

  • Pyoun, Young-Sik;Park, Jeong-Hyeon;Cho, In-Ho;Kim, Chang-Sik;Suh, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.190-195
    • /
    • 2009
  • All the failure in fatigue of torsion, bending and rolling contact, and in sliding wear begins mostly from surface. So much efforts have been invested to the surface technology which deal these problems during past decades, but the industrial demand keeps growing and more significant requirements are added to researchers and engineers. Nano crystal surface modification technology which makes the surface layers into nano crystalline, induces big and deep compressive residual stress, increases surface hardness, improves surface hardness, and make micro dimples structure on surface is an emerging technology which can break limits of current surface technology and relieve the burden of researchers and engineers. In this study, a nano crystal surface modification technology which is calling UNSM(Ultrasonic nano crystal surface modification) technology, is introduced and how it has been applied to industry to solve these failure problems is explained.

Effects of Crystal Modification on Dissolution and Stability of Droperidol (드로페리돌의 용출과 안정성에 미치는 결정형의 영향)

  • Son, Yeong-Taek;Jeong, Sin-Hui
    • YAKHAK HOEJI
    • /
    • v.40 no.4
    • /
    • pp.375-381
    • /
    • 1996
  • Five crystal modification of droperidol were prepared by recrystallization. They were characterized by UV spectrophotometer, DSC, and X-ray crystallography. Their dissolution pa tterns were also investigated. After storage of 2 months at 100% humidity, all polymorphic modifications were transformed.

  • PDF

Control of axial segregation by the modification of crucible geometry

  • Lee, Kyoung-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.191-194
    • /
    • 2008
  • We will focus on the horizontal Bridgman growth system to analyze the transport phenomena numerically, because the simple furnace system and the confined growth environment allow for the precise understanding of the transport phenomena in solidification process. In conventional melt growth process, the dopant concentration tends to vary significantly along the crystal. In this work, we propose the modification of crucible geometry for improving the productivity of silicon single-crystal growth by controlling axial specific resistivity distribution. Numerical analysis has been performed to study the transport phenomena of dopant impurities in conventional and proposed Bridgman silicon growth using the finite element method and implicit Euler time integration. It has been demonstrated using mathematical models and by numerical analysis that proposed method is useful for obtaining crystals with superior uniformity along the growth direction at a lower cost than can be obtained by the conventional melt growth process.

Effects of Crystal Forms on Dissolution of Cephradin (세프라딘의 용출에 미치는 결정형의 영향)

  • Sohn, Young-Taek;Kim, Ji-Seon
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.2
    • /
    • pp.115-119
    • /
    • 1998
  • Five polymorphic modifications of Cephradin were prepared by recrystallization from organic solvents. The isolated crystal forms were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and X-ray crystallography powder diffractometry. Modificaition 1 was the most stable form and decomposed at $201.3^{\circ}C$. Modification 3 and 4 were metastable. The dissolution of modification 3 and 4 was faster than that of marketed form.

  • PDF

Improving the Crystallinity of Heteroepitaxial Single Crystal Diamond by Surface Modification (표면개질에 의한 헤테로에피텍시 단결정 다이아몬드의 결정성 향상)

  • Bae, Mun Ki;Kim, Min Su;Kim, Seong Woo;Yoon, Su Jong;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.3
    • /
    • pp.124-128
    • /
    • 2020
  • Recently, many studies on growth of single crystal diamond using MPECVD have been conducted. The heteroepitaxial method is one of the methods for growing diamonds on a large-area substrate, and research on synthesis of single crystal diamonds using SrTiO3, MgO, and sapphire substrates has been attempted. In addition, research is being conducted to reduce the internal stress generated during diamond growth and to improve the crystallinity of the diamond. The compressive stress generated therein causes peeling and bowing from the substrate. This study aimed to synthesize heteroepitaxial single crystal diamonds with high crystallinity by surface modification. A diamond thin film was first grown on a sapphire/Ir substrate by MPECVD, and then etched with H2 gas to modified the morphology and roughness of the surface. A secondary diamond layer was grown on the surface, and the internal stress, crystallinity of the diamond were investigated. As a result, the fabrication of single crystal diamonds with improved crystallinity was confirmed.

Synthesis of Nanoparticles via Surface Modification for Electronic Applications

  • Lee, Burtrand I.;Lu, Song-Wei
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.35-58
    • /
    • 2000
  • The demand for sub-micrometer or nanometer functional ceramic powders with a better suspension behavior in aqueous media in increasing. Redispersible barium titanate (BT) nanocrystals, green light emitting Mn2+ doped Zn$_2$SiO$_4$ and ZnS nanoparticle phosphors were synthesized by a hydrothermal method or chemical precipitation with surface modification. The nanoparticle redispersibility for BT was achieved by using a polymeric surfactant. X-ray diffraction(XRD) results indicated that the BT particles are of cubic phase with 80 nm in size. XRD results of zinc silicate phosphor indicate that seeds play an important role in enhancing the nucleation and crystallization of Zn$_2$SiO$_4$ crystals in a hydrothermal condition. This paper describes and discuss the methods of surface modification, and the resulting related properties for BT, zinc silicate and zinc sulfide.

  • PDF

Fabrication of Large-Area Photovoltaic Crystal with Modified Surface Using Trimethoxysilyl Propyl Methacrylate (TMSPM) for Solar Cell Protection

  • Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.84-87
    • /
    • 2014
  • Protection of solar cell surface is important to prevent from dust, pollen, sand, etc. Therefore, development of large area antifouling film is urgent for high performance of solar cells. The surface of silica spheres was modified to fabricate large area antifouling film. The surface of monodisperse silica spheres has been modified with 3-(trimethoxysilyl) propylmethacrylate (TMSPM) to fabricate large area photonic crystal. Although the surface modification of silica spheres with TMSPM has been failed for the base catalyst, the second trial using acid catalyst showed the following results. The FTIR absorption peak at $1721cm^{-1}$ representing C=O stretching vibration indicates that the TMSPM was attached on the surface of silica spheres. The methanol solution comprised of the surface modified silica spheres (average diameter of 380 nm) and a photoinitiator was poured in the patterned silicon wafer with the dimension of 10 cm x 10 cm and irradiated UV-light during the self-assembly process. The result showed large area crack and defect free nanostructures.