Browse > Article
http://dx.doi.org/10.12656/jksht.2020.33.3.124

Improving the Crystallinity of Heteroepitaxial Single Crystal Diamond by Surface Modification  

Bae, Mun Ki (Department of Nano Fusion Technology, Pusan National University)
Kim, Min Su (Department of Nano Fusion Technology, Pusan National University)
Kim, Seong Woo (Adamant Namiki Precision Jewel Co., Ltd.)
Yoon, Su Jong (Department of Nanomechatronics Engineering, Pusan National University)
Kim, Tae Gyu (Department of Nanomechatronics Engineering, Pusan National University)
Publication Information
Journal of the Korean Society for Heat Treatment / v.33, no.3, 2020 , pp. 124-128 More about this Journal
Abstract
Recently, many studies on growth of single crystal diamond using MPECVD have been conducted. The heteroepitaxial method is one of the methods for growing diamonds on a large-area substrate, and research on synthesis of single crystal diamonds using SrTiO3, MgO, and sapphire substrates has been attempted. In addition, research is being conducted to reduce the internal stress generated during diamond growth and to improve the crystallinity of the diamond. The compressive stress generated therein causes peeling and bowing from the substrate. This study aimed to synthesize heteroepitaxial single crystal diamonds with high crystallinity by surface modification. A diamond thin film was first grown on a sapphire/Ir substrate by MPECVD, and then etched with H2 gas to modified the morphology and roughness of the surface. A secondary diamond layer was grown on the surface, and the internal stress, crystallinity of the diamond were investigated. As a result, the fabrication of single crystal diamonds with improved crystallinity was confirmed.
Keywords
Single crystal diamond; Heteroepitaxy; Etching; Crystallinity; Internal stress;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Taro yoshikawa, D. Herrling, F. Meyer, F. Burmeister, C. E. Nebel, O. Ambacher, V. Lebedev, Journal of vacuum science and technology B., 37 (2019), 1-8.
2 Z. Dai, C. Bednarski-Meinke, B. Golding, Relat. Mater., 13 (2004), 552-556.   DOI
3 S. Wolter, B. Stoner, J.G.P. Ellis, D. Buhaenko, C. Jenkins, P. Southworth, Appl. Phys. Lett., 62 (1993), 12-15.
4 X. Jiang, Diam. Relat. Mater., 2 (1993), 11-12.
5 C. Wild, N. Herres, R. Locher, W. Mueller-Sebert, P. Koidl, Diamond Relat. Mater., 3 (1994), 373-381.   DOI
6 K. Ohtsuka, H. Fukuda, K. Suzuki, A. Sawabe, Jpn. J. Appl. Phys. Pt. 2, 36 (1997), 12-14.   DOI
7 T. Tsubota, M. Ohta, K. Kusakabe, S. Morooka, M. Watanabe, H. Maeda, Diam. Relat. Mater., 9 (2000), 1380-1387.   DOI
8 P. K. Tyagi, A. Misra, K. N. Narayanan Unni, P. Rai, M. J. Singh, U. Palnitkar, D. S. Misra, F. Le Normand, M. Roy, and S. K. Kulshreshtha, Diamond Relat. Mater. 15, (2006), 304-308.   DOI
9 H. Aida, K. Koyama, K. Ikejiri and S. W. Kim, United State Patent, US20160237592A1, (2016).