• Title/Summary/Keyword: crystal

Search Result 11,837, Processing Time 0.04 seconds

Antirapakivi Mantled Feldspars from Sanbangsan Trachyte Lava Dome, Jeju Volcanic Field, Korea (산방산용암돔 조면암에서 산출되는 장석의 안티라파키비 조직)

  • Yun, Sung-Hyo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.2
    • /
    • pp.87-97
    • /
    • 2020
  • The compositions of the phenocrystic feldspars of the Sanbangsan trachyte range from labradorite(An53.6) to andesine(An35.4), and of the microphenocrysts and laths range from andesine(An31.2) to oligoclase(An18.7). Mantled feldspar which forms a thin rim around the phenocrysts and microphenocrysts, is anorthoclase(Or20.5An9.4) to sanidine(Or49.2An1.4). Phenocrystic plagioclase, which shows a distinct zonal structure, represents an oscillatory zoning in which the An content of the zone repeatedly increases or decreases between andesine (An39.3) and labradorite (An51.3) from the core toward the rim, and the rim of the phenocrysts is surrounded by alkali feldspar(Or31.9-39.4Ab63.2-57.0An4.9-3.7), showing the antirapakivi texture. Microphenocryst which does not represent the antirapakivi texture, shows the normal zoning with a decreasing An content (An36.4→An25.6) as it moves outward from the center of a crystal. As a result of X-ray mapping of K, Ca, and Na elements for the feldspar phenocrysts representing the typical zonal structure, shows the oscillatory zoning that six zones show the distinctive compositional differences, and the rims are mantled by alkali feldspar to indicate the antirapakivi texture. The groundmass is composed of K-enriched, Ca-poor alkali feldspar. The antirapakivi texture of feldspar which appears in Sanbangsan trachyte, may have been formed in mixing systems as a result of the juxtaposition of near liquidus melt, rich in alkali feldspar components(trachytic magma), with plagioclase phenocrysts and microphenocrysts already crystallized in a more mafic system.

Synthesis and Characterization of Layered Copper Hydroxides in Highly Concentrated Solution (고농도 용액에서 Layered Copper Hydroxides의 합성 및 특성)

  • Nam, Dae-Hyean;Choi, Choong-Lyeal;Kim, Kwang-Seop;Seo, Young-Jin;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.872-879
    • /
    • 2010
  • Layered copper hydroxides [LCHs, $Cu_2(OH)_3{\cdot}NO_3$] has the agricultural potentials as a fungicide because of its high crystallinity, excellent anion exchange capacity, and its regular layered particle size. The study, for the first time, has synthesized LCHs in highly concentrated solution and evaluated its physicochemical properties including the crystallinity and suspension stability. Optimal synthetic condition of LCHs was determined by crystallinity and stability of suspension as follow; 1) concentrations of $Cu(NO_3)_2$ and NaOH solutions were 3.0 M respectively, 2) reaction temperature and solution pH were $25^{\circ}C$ and 6.0, respectively, and 3) aging time after reaction was 2hr. Crystallinity of LCHs enhanced with increase in pH up to 9.0. Whereas, stability of suspension was decrease by increase in crystal size. Especially, increase in reaction temperature decreased stability of suspension. XRD patterns and SEM images exhibited that LCHs had regular layered particle size with 0.2~0.8 ${\mu}m$ and high crystallinity in optimal synthetic condition. The particle size was increased with increase in reaction temperature and pH. These results showed that LCHs synthesized in highly concentrated solution exhibited high stability of suspension as well as high crystallinity suitable to their potential as a fungicide.

Production and characterization of rice starch from stale rice using improved enzymatic digestion method (개선된 효소소화법에 의한 고미로부터 쌀전분의 생산 및 특성)

  • Kim, Reejae;Lim, SongI;Kim, Hyun-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.749-755
    • /
    • 2021
  • The objective of this study was to investigate the physicochemical properties of rice starch extracted from stale rice using alkaline steeping (AKL) and improved enzymatic digestion (iENZ) methods. The crude protein content (0.5-0.7%) of stale rice starch (SRS) was less than 1% by iENZ, but not so when measured by the existing ENZ methods. SRS is an intermediate amylose rice starch. AKL-SRS and iENZ-SRS exhibited typical A-type crystal packing arrangements with similar relative crystallinities. iENZ-SRS showed higher gelatinization onset and peak temperatures with a narrower gelatinization temperature range, compared to those of AKL-SRS, indicating that iENZ annealed SRS. Thus, iENZ-SRS exhibited lower swelling power and solubility, and higher pasting viscosities with delayed viscosity development. Overall, the use of stale rice as a rice starch source could make economical production of rice starch possible, and iENZ may diversify rice starch characteristics, which expands the utilization of rice starch in food and non-food industries.

Production and characterization of rice starch from broken rice using alkaline steeping and enzymatic digestion methods (쇄미로부터 알칼리침지법과 효소소화법을 이용한 쌀전분의 생산 및 특성)

  • Kim, Reejae;Lim, SongI;Kim, Hyun-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.731-738
    • /
    • 2021
  • This study investigated the physicochemical properties of rice starch isolated from broken rice using alkaline steeping (AKL) and enzymatic digestion (ENZ) methods. Broken rice starch (BRS) by AKL and ENZ possessed crude protein contents (0.6-1.4%) acceptable to commercial products of native starch and belonged to an intermediate amylose rice starch. AKL-BRS and ENZ-BRS showed a typical A-type crystal packing arrangement with small variations in their relative crystallinity. ENZ-BRS exhibited higher gelatinization onset and peak temperatures, and a narrower gelatinization temperature range than AKL-BRS, indicating that annealing occurred in ENZ-BRS. Lower swelling power and solubility were generally observed in the ENZ-BRS. ENZ-BRS also showed slower viscosity development, higher peak and trough viscosities, and lower breakdown, final, and setback viscosities, compared to those in AKL-BRS. These results are ascribed to the annealing phenomenon in ENZ-BRS. Overall, BRS from cheap broken rice using AKL and ENZ could contribute to the expansion of rice starch utilization in food and non-food industries.

Comparative Compressional Behavior of Zeolite-W in Different Pressure-transmitting Media (제올라이트-W의 압력전달매개체에 따른 체적탄성률 비교 연구)

  • Seoung, Donghoon;Kim, Hyeonsu;Kim, Pyosang;Lee, Yongmoon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.169-176
    • /
    • 2021
  • This study aimed to fundamentally understand structural changes of zeolite under pressure and in the presence of different pressure-transmitting media (PTM) for application studies such as immobilization of heavy metal cation or CO2 storage using pressure. High-pressure X-ray powder diffraction study was conducted on the zeolite-W (K6.4Al6.5Si25.8O64× 15.3H2O, K-MER) to understand linear compressibility and the bulk moduli in different PTM conditions. Zeolite-w is a synthetic material having the same framework as natural zeolite merlinoite ((K, Ca0.5, Ba0.5, Na)10 Al10Si22O64× 22H2O). The space group of the sample was identified as I4/mmm belonging to the tetragonal crystal system. Water, carbon dioxide, and silicone-oil were used as pressure-transmitting media. The mixture of sample and each PTM was mounted in a diamond anvil cell (DAC) and then pressurized up to 3 GPa with an increment of ca. 0.5 GPa. Pressure-induced changes of powder diffraction patterns were measured using a synchrotron X-ray light source. Lattice constants, and bulk moduli were calculated using the Le-Bail method and the Birch-Murnaghan equation. In all PTM conditions, linear compressibility of c-axis (𝛽c) was 0.006(1) GPa-1 or 0.007(1) GPa-1. On the other hand, the linear compressibility of a(b)-axis (𝛽a) was 0.013(1) GPa-1 in silicone-oil run, which is twice more compressible than the a(b)-axis in water and carbon dioxide runs, 𝛽a = 0.006(1) GPa-1. The bulk moduli were measured as 50(3) GPa, 52(3) GPa, and 29(2) GPa in water, carbon dioxide, and silicone-oil run, respectively. The orthorhombicities of ac-plane in the water, and carbon dioxide runs were comparatively constant, near 0.350~0.353, whereas the value decreased abruptly in the silicone-oil run following formula, y = -0.005(1)x + 0.351(1) by non-penetrating pressure fluid condition.

Magmatic Evolutions based on Compositional Variations with Time in the Maljandeung Tuff, Ulleung Island, Korea (울릉도 말잔등응회암에서 시간에 따른 조성변화에 근거한 마그마 진화)

  • Hwang, Sang Koo;Lee, So-Jin;Ahn, Ung San
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.111-128
    • /
    • 2019
  • Ulleung Island is the top of an intraplate alkalic volcano rising 3200 m from sea floor in the East Sea (or Sea of Japan). The emergent 984.6 m consist of eruptive products of basaltic, trachytic and phonolitic magmas, which are divided into Dodong Basaltic Rocks, and Ulleung, Seonginbong and Nari groups. The Maljandeung Tuff in the Nari Group consists of thick pyroclastic sequences which are subdivided into 4 members (N-5, U-4, 3, 2), generating from explosive eruptions during past 18.8~5.6 ka B.P. From chemical data, the Member N-5, phonolitic in composition, is considerably enriched in incompatible elements and REE patterns with significant negative Eu anomalies. The members 4, 3 and 2 are phonolitic to tephriphonolitic in composition, and their REE patterns do not have significant Eu anomalies. In variation trend diagrams, many elements show abrupt compositional gaps between members, and gradual upward-mafic variations from phonolite to tephriphonolite within each member. It suggests a downward-mafic zonation that were evolved into phonolitic zone in the lower part to tephriphonolitic zone in upper part of magma chamber. It is supposed that the chemical stratification generated from multiple mechanisms of thermal gravidiffusion, crystal fractionation, and gradual melting and sequential emplacement. The stratified magmas were explosively erupted to generate a small caldera during short period (11 ka B.P.). Especially both members (U-3, 2) were accumulated by gradually erupting from the upper phonoltic zone to the lower tephriphonoltic zone of the stratified chamber in 8.4 ka B.P. and 5.6 ka B.P. time, respectively.

Biosynthesis of Silver Nanoparticles Using Microorganism (미생물을 이용한 은 나노입자 생합성)

  • Yoo, Ji-Yeon;Jang, Eun-Young;Hong, Chang-Oh;Kim, Keun-Ki;Park, Hyean-Cheal;Lee, Sang-Mong;Kim, Young-Gyun;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1354-1360
    • /
    • 2018
  • The aim of this study was to develop a simple, environmentally friendly synthesis of silver nanoparticles (SNPs) without the use of chemical reducing agents by exploiting the extracellular synthesis of SNPs in a culture supernatant of Bacillus thuringiensis CH3. Addition of 5 mM $AgNO_3$ to the culture supernatant at a ratio of 1:1 caused a change in the maximum absorbance at 418 nm corresponding to the surface plasmon resonance of the SNPs. Synthesis of SNPs occurred within 8 hr and reached a maximum at 40-48 hr. The structural characteristics of the synthesized SNPs were investigated by various instrumental analysis. FESEM observations showed the formation of well-dispersed spherical SNPs, and the presence of silver was confirmed by EDS analysis. The X-ray diffraction spectrum indicated that the SNPs had a face-centered cubic crystal lattice. The average SNP size, calculated using DLS, was about 51.3 nm and ranged from 19 to 110 nm. The synthesized SNPs exhibited a broad spectrum of antimicrobial activity against a variety of pathogenic Gram-positive and Gram-negative bacteria and yeasts. The highest antimicrobial activity was observed against C. albicans, a human pathogenic yeast. The FESEM observations determined that the antimicrobial activity of the SNPs was due to destruction of the cell surface, cytoplasmic leakage, and finally cell lysis. This study suggests that B. thuringiensis CH3 is a potential candidate for efficient synthesis of SNPs, and that these SNPs have potential uses in a variety of pharmaceutical applications.

Hydrothermal Evolution for the Inseong Au-Ag Deposit in the Hwanggangri Metallogenic Region, Korea (황강리 광화대 인성 금-은 광상의 광화 유체 진화)

  • Cho, Hye Jeong;Seo, Jung Hun;Lee, Tong Ha;Yoo, Bong Chul;Lee, Hyeonwoo;Lee, Kangeun;Lim, Subin;Hwang, Jangwon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.307-323
    • /
    • 2018
  • The Inseong Au-Ag and base metal deposit, located in Chungchengbuk-do, Korea, consists of series of quartz veins filling fissures. The deposit occurs in Hwanggangri meta-sediment formation, a lime pebble-bearing phyllite, in the Okcheon Supergroup. Abundant ore minerals in the deposit are pyrite, arsenopyrite, sphalerite, chalcopyrite and galena. The gangue minerals are quartz, calcite and chlorite. Hydrothermal alteration such as chlorization, silicitication, sericitization and carbonitization can be observed around the quartz veins. 4 vein stages can be distinguished based on its paragenetic sequence, vein structure, alteration features and ore minerals. Microthermometry of the fluid inclusion assemblages occur in the veins are conducted to reconstruct a hydrothermal P-T evolution. Fluid inclusions in clean and barren quartz vein in stage 1 have Th of $270{\sim}342^{\circ}C$ and salinity of 1.7~6.4 (NaCl eqiv.) wt%. Euhedral quartz crystal in stage 2 have Th of $108{\sim}350^{\circ}C$ and salinity of 0.5~7.5 wt%. Barren milky quartz vein in stage 3 have Th of $174{\sim}380^{\circ}C$ and salinity of 0.8~7.5 wt%. Calcite vein in stage 4 have Th of $103{\sim}265^{\circ}C$ and salinity of 0.7~6.4 wt%. Calculated paleodepth about 0.5~1.5 km (hydrostatic pressure) indicate epithermal ore-forming condition. Shallow depth but relatively high-T hydrothermal fluids possibly create a steep geothermal gradient, sufficient for base metal precipitation in the Inseong deposit.

Impact Assessment of Flame Retardant on Wooden Building with Dancheong (목조문화재 단청에 방염제가 미치는 영향평가)

  • Kim, Hwan-Ju;Lee, Han-Hyoung;Lee, Hwa-Soo;Chung, Yong-Jae;Han, Kyu-Sung
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.2
    • /
    • pp.56-69
    • /
    • 2016
  • Flame resistant treatment has been applied since 1973 for fire prevention in historical wooden buildings, but several problems, such as whitening and discoloration are constantly occurring in some Dancheong, in spite of evaluation criteria. It is supposed that these phenomena are caused by the stability issue of flame retardant, Dancheong production methods, the residue of chemicals, which were applied in the past, building location environments, etc., but no evaluation and cause inspection has been performed. Therefore, this study aims to verify the effect of flame retardant on Dancheong by producing Pseudo-samples and setting spatial and temporal environment conditions. Pseudo-samples of Dancheong were produced using three methods; the method specified in the Standard Specification of Properties; the method, which is generally used in the site and the traditional method. For different environment conditions of pseudo-samples, the areas were classified into a coastal area and an inland area and the places were classified into a sunny place and a wetland. After applying a flame retardant, annual variations were inspected for 12 months and change aspects were observed through scan and regular observation. In annual variation inspection, various variations like whitening, decolorization, dissolution and exfoliation were found and especially, whitening was most dominant. When the effect of flame retardant depending on the production methods was analyzed, whitening occurred in all the three production methods. It is supposed that this is because calcium(Ca) was contained in the coloring material of each production method and it reacted with phosphorous(P) of flame retardant. When the effect of flame retardant depending on the environment conditions was analyzed, whitening occurred more in the coastal area than in the inland area and it reduced in the building in a sunny place, which was constructed using the traditional method. It is supposed that this results from the humidity change and the difference of glue used in each production method. In conclusion, for using a flame retardant containing phosphorous(P), there is a need to check if calcium components including Oyster Shell White were used in Dancheong in advance and to conduct various preliminary studies on place conditions and Dancheong construction conditions.

A Study of Fluoride and Arsenic Adsorption from Aqueous Solution Using Alum Sludge Based Adsorbent (알럼 슬러지 기반 흡착제를 이용한 수용액상 불소 및 비소 흡착에 관한 연구)

  • Lee, Joon Hak;Ji, Won Hyun;Lee, Jin Soo;Park, Seong Sook;Choi, Kung Won;Kang, Chan Ung;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.667-675
    • /
    • 2020
  • An Alum-sludge based adsorbent (ASBA) was synthesized by the hydrothermal treatment of alum sludge obtained from settling basin in water treatment plant. ASBA was applied to remove fluoride and arsenic in artificially-contaminated aqueous solutions and mine drainage. The mineralogical crystal structure, composition, and specific surface area of ASBA were identified. The result revealed that ASBA has irregular pores and a specific surface area of 87.25 ㎡ g-1 on its surface, which is advantageous for quick and facile adsorption. The main mineral components of the adsorbent were found to be quartz(SiO2), montmorillonite((Al,Mg)2Si4O10(OH)2·4H2O) and albite(NaAlSi3O8). The effects of pH, reaction time, initial concentration, and temperature on removal of fluoride and arsenic were examined. The results of the experiments showed that, the adsorbed amount of fluoride and arsenic gradually decreased with increasing pH. Based on the results of kinetic and isotherm experiments, the maximum adsorption capacity of fluoride and arsenic were 7.6 and 5.6 mg g-1, respectively. Developed models of fluoride and arsenic were suitable for the Langmuir and Freundlich models. Moreover, As for fluoride and arsenic, the increase rate of adsorption concentration decreased after 8 and 12 hr, respectively, after the start of the reaction. Also, the thermodynamic data showed that the amount of fluoride and arsenic adsorbed onto ASBA increased with increasing temperature from 25℃ to 35℃, indicating that the adsorption was endothermic and non-spontaneous reaction. As a result of regeneration experiments, ASBA can be regenerated by 1N of NaOH. In the actual mine drainage experiment, it was found that it has relatively high removal rates of 77% and 69%. The experimental results show ASBA is effective as an adsorbent for removal fluoride and arsenic from mine drainage, which has a small flow rate and acid/neutral pH environment.