• Title/Summary/Keyword: cryptography

Search Result 972, Processing Time 0.025 seconds

A White Box Implementation of Lightweight Block Cipher PIPO (경량 블록 암호 PIPO의 화이트박스 구현 기법)

  • Ham, Eunji;Lee, Youngdo;Yoon, Kisoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.751-763
    • /
    • 2022
  • With the recent increase in spending growth in the IoT sector worldwide, the importance of lightweight block ciphers to encrypt them is also increasing. The lightweight block cipher PIPO algorithm proposed in ICISC 2020 is an SPN-structured cipher using an unbalanced bridge structure. The white box attack model refers to a state in which an attacker may know the intermediate value of the encryption operation. As a technique to cope with this, Chow et al. proposed a white box implementation technique and applied it to DES and AES in 2002. In this paper, we propose a white box PIPO applying a white box implementation to a lightweight block cipher PIPO algorithm. In the white box PIPO, the size of the table decreased by about 5.8 times and the calculation time decreased by about 17 times compared to the white box AES proposed by Chow and others. In addition, white box PIPO was used for mobile security products, and experimental results for each test case according to the scope of application are presented.

SITM Attacks on Skinny-128-384 and Romulus-N (Skinny-128-384와 Romulus-N의 SITM 공격)

  • Park, Jonghyun;Kim, Jongsung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.807-816
    • /
    • 2022
  • See-In-The-Middle (SITM) is an analysis technique that uses Side-Channel information for differential cryptanalysis. This attack collects unmasked middle-round power traces when implementing block ciphers to select plaintext pairs that satisfy the attacker's differential pattern and utilize them for differential cryptanalysis to recover the key. Romulus, one of the final candidates for the NIST Lightweight Cryptography standardization competition, is based on Tweakable block cipher Skinny-128-384+. In this paper, the SITM attack is applied to Skinny-128-384 implemented with 14-round partial masking. This attack not only increased depth by one round, but also significantly reduced the time/data complexity to 214.93/214.93. Depth refers to the round position of the block cipher that collects the power trace, and it is possible to measure the appropriate number of masking rounds required when applying the masking technique to counter this attack. Furthermore, we extend the attack to Romulus's Nonce-based AE mode Romulus-N, and Tweakey's structural features show that it can attack with less complexity than Skinny-128-384.

Vulnerability analysis for AppLock Application (AppLock 정보 은닉 앱에 대한 취약점 분석)

  • Hong, Pyo-gil;Kim, Dohyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.845-853
    • /
    • 2022
  • As the memory capacity of smartphone increases, the type and amount of privacy stored in the smartphone is also increasing. but recently there is an increasing possibility that various personal information such as photos and videos of smartphones may be leaked due to malicious apps by malicious attackers or other people such as repair technicians. This paper analyzed and studied the security and vulnerability of these vault apps by analyzing the cryptography algorithm and data protection function. We analyzed 5.3.7(June 13, 2022) and 3.3.2(December 30, 2020) versions of AppLock, the most downloaded information-hidding apps registered with Google Play, and found various vulnerabilities. In the case of access control, there was a vulnerability in that values for encrypting patterns entered by users were hardcoded into plain text in the source code, and encrypted pattern values were stored in xml files. In addition, in the case of the vault function, there was a vulnerability in that the files and log files for storing in the vault were not encrypted.

Blockchain-Based Smart Home System for Access Latency and Security (지연시간 및 보안을 위한 블록체인 기반 스마트홈 시스템 설계)

  • Chang-Yu Ao;Kang-Chul Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.157-164
    • /
    • 2023
  • In modern society, smart home has become a part of people's daily life. But traditional smart home systems often have problems such as security, data centralization and easy tampering, so a blockchain is an emerging technology that solves the problems. This paper proposes a blockchain-based smart home system which consists in a home and a blockchain network part. The blockchain network with 8 nodes is implemented by HyperLeger Fabric platform on Docker. ECC(Elliptic Curve Cryptography) technology is used for data transmission security and RBAC(role-based access control) manages the certificates of network members. Raft consensus algorithm maintains data consistency across all nodes in a distributed system and reduces block generation time. The query and data submission are controlled by the smart contract which allows nodes to safely and efficiently access smart home data. The experimental results show that the proposed system maintains a stable average query and submit time of 84.5 [ms] and 93.67 [ms] under high concurrent accesses, respectively and the transmission data is secured through simulated packet capture attacks.

Cryptography Module Detection and Identification Mechanism on Malicious Ransomware Software (악성 랜섬웨어 SW에 사용된 암호화 모듈에 대한 탐지 및 식별 메커니즘)

  • Hyung-Woo Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Cases in which personal terminals or servers are infected by ransomware are rapidly increasing. Ransomware uses a self-developed encryption module or combines existing symmetric key/public key encryption modules to illegally encrypt files stored in the victim system using a key known only to the attacker. Therefore, in order to decrypt it, it is necessary to know the value of the key used, and since the process of finding the decryption key takes a lot of time, financial costs are eventually paid. At this time, most of the ransomware malware is included in a hidden form in binary files, so when the program is executed, the user is infected with the malicious code without even knowing it. Therefore, in order to respond to ransomware attacks in the form of binary files, it is necessary to identify the encryption module used. Therefore, in this study, we developed a mechanism that can detect and identify by reverse analyzing the encryption module applied to the malicious code hidden in the binary file.

Deep Learning Based Side-Channel Analysis for Recent Masking Countermeasure on SIKE (SIKE에서의 최신 마스킹 대응기법에 대한 딥러닝 기반 부채널 전력 분석)

  • Woosang Im;Jaeyoung Jang;Hyunil Kim;Changho Seo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.151-164
    • /
    • 2023
  • Recently, the development of quantum computers means a great threat to existing public key system based on discrete algebra problems or factorization problems. Accordingly, NIST is currently in the process of contesting and screening PQC(Post Quantum Cryptography) that can be implemented in both the computing environment and the upcoming quantum computing environment. Among them, SIKE is the only Isogeny-based cipher and has the advantage of a shorter public key compared to other PQC with the same safety. However, like conventional cryptographic algorithms, all quantum-resistant ciphers must be safe for existing cryptanlysis. In this paper, we studied power analysis-based cryptographic analysis techniques for SIKE, and notably we analyzed SIKE through wavelet transformation and deep learning-based clustering power analysis. As a result, the analysis success rate was close to 100% even in SIKE with applied masking response techniques that defend the accuracy of existing clustering power analysis techniques to around 50%, and it was confirmed that was the strongest attack on SIKE.

Securing Sensitive Data in Cloud Storage (클라우드 스토리지에서의 중요데이터 보호)

  • Lee, Shir-Ly;Lee, Hoon-Jae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.871-874
    • /
    • 2011
  • The fast emerging of network technology and the high demand of computing resources have prompted many organizations to outsource their storage and computing needs. Cloud based storage services such as Microsoft's Azure and Amazon's S3 allow customers to store and retrieve any amount of data, at anytime from anywhere via internet. The scalable and dynamic of the cloud storage services help their customer to reduce IT administration and maintenance costs. No doubt, cloud based storage services brought a lot of benefits to its customer by significantly reducing cost through optimization increased operating and economic efficiencies. However without appropriate security and privacy solution in place, it could become major issues to the organization. As data get produced, transferred and stored at off premise and multi tenant cloud based storage, it becomes vulnerable to unauthorized disclosure and unauthorized modification. An attacker able to change or modify data while data inflight or when data is stored on disk, so it is very important to secure data during its entire life-cycle. The traditional cryptography primitives for the purpose of data security protection cannot be directly adopted due to user's lose control of data under off premises cloud server. Secondly cloud based storage is not just a third party data warehouse, the data stored in cloud are frequently update by the users and lastly cloud computing is running in a simultaneous, cooperated and distributed manner. In our proposed mechanism we protect the integrity, authentication and confidentiality of cloud based data with the encrypt- then-upload concept. We modified and applied proxy re-encryption protocol in our proposed scheme. The whole process does not reveal the clear data to any third party including the cloud provider at any stage, this helps to make sure only the authorized user who own corresponding token able to access the data as well as preventing data from being shared without any permission from data owner. Besides, preventing the cloud storage providers from unauthorized access and making illegal authorization to access the data, our scheme also protect the data integrity by using hash function.

A New BISON-like Construction Block Cipher: DBISON

  • Zhao, Haixia;Wei, Yongzhuang;Liu, Zhenghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1611-1633
    • /
    • 2022
  • At EUROCRYPT 2019, a new block cipher algorithm called BISON was proposed by Canteaut et al. which uses a novel structure named as Whitened Swap-Or-Not (WSN). Unlike the traditional wide trail strategy, the differential and linear properties of this algorithm can be easily determined. However, the encryption speed of the BISON algorithm is quite low due to a large number of iterative rounds needed to ensure certain security margins. Commonly, denoting by n is the data block length, this design requires 3n encryption rounds. Moreover, the block size n of BISON is always odd, which is not convenient for operations performed on a byte level. In order to overcome these issues, we propose a new block cipher, named DBISON, which more efficiently employs the ideas of double layers typical to the BISON-like construction. More precisely, DBISON divides the input into two parts of size n/2 bits and performs the round computations in parallel, which leads to an increased encryption speed. In particular, the data block length n of DBISON can be even, which gives certain additional implementation benefits over BISON. Furthermore, the resistance of DBISON against differential and linear attacks is also investigated. It is shown the maximal differential probability (MDP) is 1/2n-1 for n encryption rounds and that the maximal linear probability (MLP) is strictly less than 1/2n-1 when (n/2+3) iterative encryption rounds are used. These estimates are very close to the ideal values when n is close to 256.

Protection System Against The Infringement of Information Signals in Fiber Communication System (광섬유 통신 시스템의 정보 신호 침해에 대한 보호 시스템)

  • Ugli, Sobirov Asilzoda Alisher;Umaralievich, Nishonov Ilhomjon;Kim, Daeik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.219-228
    • /
    • 2022
  • One of the most pressing and demanding issues today in the conditions of widespread transformation and digitalization of spheres of human activity is information security and ensuring the integrity of data. The main research and development in the field of information security is aimed at improving efficiency and rationalization. One of the main means of data transmission and operation of information complexes are fiber-optic systems. To date, there have been incidents of illegal intrusion and theft of information, passing through this type of communication. Thus, today there is a problem associated with insufficient information security in fiber-optic data transmission systems. One of the most effective tools to counter acts of illegal interference in systems are artificial intelligence and cryptographic algorithms of information protection. It is the symbiosis of these two tools that can qualitatively improve the level of information security in fiber-optic data transmission systems. Thus, the authors of this article pursue the goal associated with the description of an innovative system for protecting information from violations in fiber-optic data transmission systems based on the integration of intelligent cryptographic algorithms.

Analyses of Requirement of Security based on Gateway Architecture for Secure Internet (사물인터넷망의 보안 및 프라이버시 문제 해결을 위한 게이트웨이 보안 구조 분석)

  • Kim, Jung Tae
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.3
    • /
    • pp.461-470
    • /
    • 2016
  • As IoT is broadly used in many fields, the security of IoT is becoming especially important and critical issues. Security and privacy are the key issues for IoT applications, and still faced with some enormous challenges. Sensor has limited resources such as computing power, memory, battery. By means of deeply analyzing the security architecture and features in security framework. While a number of researchers have explored such security challenges and open problems in IoT, there is an unfortunate lack of a systematic study of the security challenges in the IoT landscape. This special issue features recent and emerging advances IoT architecture, protocols, services and applications. The alternative method is IoT security gateway. In this paper, we surveyed the demands and requirements. By means of deeply analyzing the security architecture and features, we analyzed the demands and requirements for security based on gateway application.