• Title/Summary/Keyword: cryogenic simulation

Search Result 68, Processing Time 0.023 seconds

A Study of MTTF improvement of Thermal Device cryogenic-cooler (열상장비 냉각기의 MTTF 개선연구)

  • Jung, Yunsik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.252-257
    • /
    • 2018
  • In this paper, we propose a mean time to failure (MTTF) to improve the solution for a cryogenic cooler, which is an important part of a cooled thermal device. Common electronic devices have a high possibility of failure due to various environmental factors, such as temperature and humidity. But some special devices (such as thermal devices) are designed to overcome environmental factors. The most affected part of a cooled thermal device's MTTF is the cryogenic cooler. The MTTF of a cryogenic cooler is affected by the device's internal heat. Therefore, if the device's internal heat is reduced, the cryogenic cooler's MTTF increases. From the present device's internal heat simulation, we analyze the improvement method of the device. The proposed improvement method's effectiveness is verified by simulation and MTTF calculation.

Thermal Effects on Cryogenic Cavitating Flows around an Axisymmetric Ogive

  • Shi, Suguo;Wang, Guoyu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.324-331
    • /
    • 2010
  • Cavitation in cryogenic fluids generates substantial thermal effects and strong variations in fluid properties, which in turn alter the cavity characteristics. In order to investigate the cavitation characteristics in cryogenic fluids, numerical simulations are conducted around an axisymmetric ogive in liquid nitrogen and hydrogen respectively. The modified Merkle cavitation model and energy equation which accounts for the influence of cavitation are used, and variable thermal properties of the fluid are updated with software. A good agreement between the numerical results and experimental data are obtained. The results show that vapor production in cavitation extracts the latent heat of evaporation from the surrounding liquid, which decreases the local temperature, and hence the local vapor pressure in the vicinity of cavity becomes lower. The cavitation characteristics in cryogenic fluids are obtained that the cavity seems frothy and the cavitation intense is lower. It is also found that when the fluid is operating close to its critical temperature, thermal effects of cavitation are more obviously in cryogenic fluids. The thermal effect on cavitation in liquid hydrogen is more distinctively compared with that in liquid nitrogen due to the changes of density ratio, vapour pressure gradient and other variable properties of the fluid.

A Study on the Development of a Cryogenic Air Separation Unit to Produce High Purity Nitrogen (고순도 질소생산용 초저온 공기분리장치 개발 연구)

  • 용평순;문흥만;이성철
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.69-73
    • /
    • 2001
  • For developing the cryogenic air separation unit, it requires some technology such as basic process design. equipment design and manufacturing based on the cryogenic physical properties and separation theory. In this study, we developed a process and equipment for producing high purity nitrogen which has the production capacity of 1600N㎥/h under 1 ppm $O_2$ and $H_2O$. Also we found that the number of theoretical plate(NTP) of distillation column was 44 and maximum nitrogen recovery ration of this process was 42% from the process simulation. The performance test was also carried out for the nitrogen recovery ratio and equipment efficiency. The results showed that the optimum nitrogen recovery was 41% and the maximum equipment efficiency was attained.

  • PDF

A Study on Transient Numerical Simulation on Heat Transfer Characteristics in the Resistive SFCL

  • Kim Chul-Ho;Lee Kee-Man;Ryu Kyung-Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.14-19
    • /
    • 2005
  • A transient numerical simulation was conducted to have variation of temperature on an element of resistive Superconducting Fault Current Limiter (SFCL) under quench condition. It is very important engineering information for an optimum design of cryogenic system for cooling of a resistive SFCL element. A bifilar coil for resistive SFCL for 10 MVA system was incorporated as a model in this numerical study. From the numerical simulation result, it was found that the averaged temperature on the shunt and Bi-2212 element at 500 kW, 100 ms was 711.1 K and 198.4 K respectively. The temperature variation with the change of the hot-spot size and time is also obtained. The maximum temperature was continuously increased in all cases until the hot-spot stops at 100ms and it was going down after then. Such as, the details of temperature distribution on the SFCL element obtained from this numerical study and it should be very valuable information on the decision of the cooling capacity of cryogenic system.

3-D Magnetostatic Finite Element Simulation of a Low-Tc Superconducting Power Supply with Respect to the Excitation Current (여자전류에 따른 저온초전도전원장치의 3차원 정자계 유한요소 시뮬레이션)

  • Bae, Deok-Gwon;Kim, Ho-Min;Lee, Chan-Ju;Yun, Yeong-Su;Lee, Sang-Jin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.364-369
    • /
    • 2002
  • In this paper, 3-D magnetostatic finite element simulation of a rotux type Low-Tc superconducing (LTS) superconducting power supply, finite element method, cryogenic system, superconducting foil by generated magnetic flux from the rotating pole. The magnetic flux density on the superconducting foil caused by two exciters is therefore sufficiently greater than its critical magnetic flux density and it is an essential point in LTS power supply design. To establish the sufficient flux path of this machine, ferromagnetic materials is used in this power supply. When ferromagnetic materials is used at extremely low temperature, its characteristic of magnetization differs to that at room temperature. For this reason, special consideration is needed in the magnetic analysis of cryogenic systems. When the excitation current is 10A, the normal spot appears on superconducting foil. The results of this analysis are calculated and compared with the experimental results. The linkage flux due to the excitation current of 10, 20, 30, 40 and 50A are respectively $1.30{\times}10-4$, $2.67{\times}10-4$, $5.08{\times}10-4$ and $6.15{\times}10-4Wb$.

Cryogenic Distillation Simulation for Hydrogen Isotopes Separation (수소 동위원소 분리를 위한 초저온증류공정 모사)

  • Noh, Sanggyun;Rho, Jaehyun;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4643-4651
    • /
    • 2013
  • In this study, we have surveyed the new technologies in the cryogenic distillation of ITER, equilibrium reactors and helium refrigeration cycle contained in the isotope separation system (ISS). We also have collected thermodynamic and transport properties for $H_2$, HD, $D_2$, HT, DT and $T_2$ components of which properties are not built in a general purpose chemical process simulators such as Aspen Plus and PRO/II with PROVISION. Verification works have been performed to compare between literature data and simulation results. For the simulation of ISS involving six hydrogen isotope components, four distillation columns and two equilibrium reactors are used for the separation of $D_2$ and DT from $T_2$.

A Study on the Development for a Cryogenic Air Separation Unit (심랭식 공기분리장치 개발 연구)

  • 문흥만
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.132-135
    • /
    • 2001
  • Cryogenic air separation unit(ASU) was developed about 100 year ago in Europe. However, because there is not any ability of process design or manufacturing of ASU in Korea, many ASUs come from advanced countries every year. The purpose of this study is the development of cryogenic air separation unit by our own ability, especially cold box for nitrogen production. On this study, we developed the computer program for physical properties of gases and process simulation. We also did process design and manufactured of cold box, including air separation column, liquid air heat exchanger and condenser. The result of cold box test was successful.

  • PDF

Comparative Study on the Refrigeration Processes between Refrigeration Using Vapor Recompression and Refrigeration Using LN2 Cold Heat for the Carbon Dioxide Liquefaction (이산화탄소 액화를 위한 증기 재압축 냉동 공정과 액체질소 냉열을 이용한 냉동 공정의 비교 연구)

  • SANGGYUN NOH
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.549-554
    • /
    • 2023
  • In this paper, three kinds of studies have been completed to obtain highly purified carbon dioxide having more than 7N purity as an electronic grade quality. PRO/II with PROVISION release January 2023 from AVEVA company was used, and Peng-Robinson equation of the state model with Twu's alpha function was selected for the modeling of the cryogenic distillation process. When using LN2 cold heat, we can obtain highest recovery of carbon dioxide as a bottom product for a cryogenic distillation column.

LIQUID FLOW AND EVAPORATION SIMULATION OF CRYOGENIC FLUID IN THE WALL OF CRYOGENIC FLUID CARGO CONTAINMENT SYSTEM (극저온 유체 화물창 방벽 내의 액체유동 및 기화 시뮬레이션)

  • Lee, Hee-Bum;Park, Bum-Jin;Rhee, Shin-Hyung;Bae, Jun-Hong;Lee, Kyung-Won;Jeong, Wang-Jo;An, Sang-Jun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.308-315
    • /
    • 2008
  • 극저온 유체를 운반하는 선박의 화물창은 보통 1차 방벽과 2차 방벽으로 구성되어 있다. 1차 방벽에 소량의 극저온 유체의 누출이 생기더라도, 액밀이 되는 2차 방벽에서 추가적인 극저온 유체의 누출을 방지할 수 있기 때문이다. 그러나 2차 방벽에 추가적인 손상이 생길 경우 유리솜으로 만들어진 Flat Joint를 거쳐 선체내벽까지 극저온 유체에 노출될 가능성이 있게 된다. 본 연구의 관심사는 2차 방벽의 손상 정도에 따라, 그리고 누출되는 극저온 유체의 양에 따라, 내측선체에 얼마나 영향이 미치는가를 알아보는 것이다. 이를 위해 본 연구에서는 극저온 유체를 운반하는 선박의 화물창을 구성하는 2차 방벽에 구멍을 뚫어 Flat Joint 사이로 극저온 유체가 흘러 들어가도록 격자를 생성한 후, CFD 소프트웨어를 이용하여 극저온 유체의 누출에 대한 계산을 수행 하였으며 이를 실험 결과와 비교 분석 하였다. 실험과 계산 결과를 살펴보면, 극저온 유체량에 따라 내측 선체에의 피해를 최소화 할 수 있음을 확인하였다.

  • PDF

LIQUID FLOW AND EVAPORATION SIMULATION OF CRYOGENIC FLUID IN THE WALL OF CRYOGENIC FLUID CARGO CONTAINMENT SYSTEM (극저온 유체 화물창 방벽 내의 액체유동 및 기화 시뮬레이션)

  • Lee, Hee-Bum;Park, Bum-Jin;Rhee, Shin-Hyung;Bae, Jun-Hong;Lee, Kyung-Won;Jeong, Wang-Jo;An, Sang-Jun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.308-315
    • /
    • 2008
  • 극저온 유체를 운반하는 선박의 화물창은 보통 1차 방벽과 2차 방벽으로 구성되어 있다. 1차 방벽에 소량의 극저온 유체의 누출이 생기더라도, 액밀이 되는 2차 방벽에서 추가적인 극저온 유체의 누출을 방지할 수 있기 때문이다. 그러나 2차 방벽에 추가적인 손상이 생길 경우 유리솜으로 만들어진 Flat Joint를 거쳐 선체내벽까지 극저온 유체에 노출될 가능성이 있게 된다. 본 연구의 관심사는 2차 방벽의 손상 정도에 따라, 그리고 누출되는 극저온 유체의 양에 따라, 내측선체에 얼마나 영향이 미치는가를 알아보는 것이다. 이를 위해 본 연구에서는 극저온 유체를 운반하는 선박의 화물창을 구성하는 2차 방벽에 구멍을 뚫어 Flat Joint 사이로 극저온 유체가 흘러 들어가도록 격자를 생성한 후, CFD 소프트웨어를 이용하여 극저온 유체의 누출에 대한 계산을 수행 하였으며 이를 실험 결과와 비교 분석 하였다. 실험과 계산 결과를 살펴보면, 극저온 유체량에 따라 내측 선체에의 피해를 최소화 할 수 있음을 확인하였다.

  • PDF