• 제목/요약/키워드: cryogenic properties

검색결과 193건 처리시간 0.024초

극저온 열처리에 의한 Al6061 합금의 잔류응력 제거 및 열처리 특성 평가 (Relief of Residual Stress and Estimation of Heat-Treatment Characteristics for Al6061 Alloy by Cryogenic Heat Treatment)

  • 고대훈;박기정;조영래;임학진;이정민;김병민
    • 대한기계학회논문집A
    • /
    • 제35권10호
    • /
    • pp.1145-1153
    • /
    • 2011
  • 본 연구의 목적은 극저온 열처리를 통해 Al6061 의 열처리 잔류응력을 제거하는 것이다. 이를 위해 유한요소해석을 이용하여 열처리 잔류응력을 예측하였으며, 열처리 조건에 따른 각 단계별 대류 열전달계수를 T6 와 극저온 열처리 실험을 수행하여 결정하였다. 예측된 잔류응력 결과는 X 선회절법(XRD)으로 측정된 잔류응력 결과와 비교하여 유한요소해석 결과의 타당성을 확인하였다. 또한 T6 와 극저온 열처리에 대해 각각 전기 전도도와 경도를 측정하여 기계적 특성을 평가하고 TEM 관찰과 XRD 회절 분석을 통해 석출물의 크기 및 성분을 파악하였다. 이를 통해 Al6061 의 T6 열처리와 비교하여 극저온 열처리를 적용함에 따른 잔류응력, 기계적 특성 및 미세조직변화를 조사하였다.

Consistent thermal analysis procedure of LNG storage tank

  • Jeon, Se-Jin;Jin, Byeong-Moo;Kim, Young-Jin;Chung, Chul-Hun
    • Structural Engineering and Mechanics
    • /
    • 제25권4호
    • /
    • pp.445-466
    • /
    • 2007
  • As the LNG (Liquefied Natural Gas) tank contains cryogenic liquid, realistic thermal analyses are of a primary importance for a successful design. The structural details of the LNG tank are so complicated that some strategies are necessary to reasonably predict its temperature distribution. The proposed heat transfer model can consider the beneficial effects of insulation layers and a suspended deck on temperature distribution of the outer concrete tank against cryogenic conditions simply by the boundary conditions of the outer tank model. To this aim, the equilibrium condition or heat balance in a steady state is utilized in a various way, and some aspects of heat transfer via conduction, convection and radiation are implemented as necessary. Overall thermal analysis procedures for the LNG tank are revisited to examine some unjustifiable assumptions of conventional analyses. Concrete and insulation properties under cryogenic condition and a reasonable conversion procedure of the temperature-induced nonlinear stress into the section forces are discussed. Numerical examples are presented to verify the proposed schemes in predicting the actual temperature and stress distributions of the tank as affected by the cryogenic LNG for the cases of normal operation and leakage from the inner steel tank. It is expected that the proposed schemes enable a designer to readily detect the effects of insulation layers and a suspended deck and, therefore, can be employed as a useful and consistent tool to evaluate the thermal effect in a design stage of an LNG tank as well as in a detailed analysis.

복합재-알루미늄 양면겹치기 조인트를 이용한 접착제의 극저온 물성 평가 (Evaluation of Cryogenic Performance of Adhesives Using Composite-Aluminum Double Lap Joints)

  • 강상국;김명곤;공철원;김천곤
    • Composites Research
    • /
    • 제19권4호
    • /
    • pp.23-30
    • /
    • 2006
  • 극저온 추진제 탱크를 개발하는 과정에서 복합재와 알루미늄 라이너를 접합하기 위한 접착제의 선택은 탱크의 안전성과도 직결된 매우 중요한 문제이다. 따라서 적합한 극저온용 접착제를 선택하기 위해 3종류의 접착필름이 선정되었으며 극저온용으로 개발된 탄소섬유/에폭시와 라이너 재료로 사용되는 알루미늄으로 구성된 양면 겹치기 조인트 시편을 제작하였다. 제작된 시편을 극저온 환경챔버를 사용하여 상온과 $-150^{\circ}C$에서 인장실험을 수행하여 각 접착제의 접착강도를 비교하였으며 파손 특성을 분석하였다. 또한 양면 겹치기 조인트 시편의 각 구성재료의 온도에 따른 기계적 물성변화를 측정하였으며 이를 이용하여 ABAQUS를 통한 유한요소해석을 수행하여 양면 겹치기 조인트 시편의 인장시험결과를 분석하였다.

수소 동위원소 분리를 위한 초저온증류공정 모사 (Cryogenic Distillation Simulation for Hydrogen Isotopes Separation)

  • 노상균;노재현;조정호
    • 한국산학기술학회논문지
    • /
    • 제14권9호
    • /
    • pp.4643-4651
    • /
    • 2013
  • 본 연구에서는 ITER의 수소동위원소 분리 시스템에 포함되어 있는 심냉 증류공정과 평형 반응기 및 헬륨 냉매를 이용한 냉동 사이클에 대해 추적조사를 실시하였다. 또한 Aspen Plus나 PRO/II with PROVISION과 같은 정상 상태 화학공정 모사기에 내장되어 있지 않은 $H_2$, HD, $D_2$, HT, DT와 $T_2$ 성분에 대한 열역학 및 전달물성을 수집하였다. 문헌치로부터 구한 물성 데이터와 전산모사를 통해서 추산한 물성결과 사이의 비교 및 검증작업을 수행하였다. 6개의 수소동위원소 성분을 포함한 동위원소 분리를 위해서 4기의 심냉 증류탑과 2기의 평형 반응기를 사용해서 $T_2$로부터 $D_2$ 및 DT를 분리해 내기 위한 전산모사를 수행하였다.

극저온용 오스테나이트계 Fe-30Mn-0.2C(-1.5Al) 고망간강의 수소 취화 특성 (Hydrogen Embrittlement Properties of Austenitic Fe-30Mn-0.2C(-1.5Al) High-Manganese Steels for Cryogenic Applications)

  • 이상인;이지민;황병철
    • 열처리공학회지
    • /
    • 제31권6호
    • /
    • pp.283-289
    • /
    • 2018
  • This present study deals with the hydrogen embrittlement properties of austenitic Fe-30Mn-0.2C(-1.5Al) high-manganese steels for cryogenic applications. They were electrochemically charged with hydrogen and then subjected to tensile tests for evaluating hydrogen embrittlement behavior. Tensile test results showed that after hydrogen charging the tensile strength and elongation of the Al-free steel were more remarkably decreased with increasing current density when compared to the Al-added steel. After hydrogen charging of the Al-added steel, it was found that the measured hydrogen content was small and silver particles were relatively less decorated. Therefore, the Al-added steel has a superior hydrogen embrittlement resistance to the Al-free steel because the addition of Al suppresses the injection of hydrogen during electrochemical hydrogen charging.

Breakdown Properties of Coolant for HTS Apparatus Operating at Cryogenic Temperature

  • S.M. Baek;J.M. Joung;Kim, S.H
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.52-55
    • /
    • 2003
  • For the dielectric insulation design of any high temperature superconducting (HTS) apparatus in the electrical power systems, the breakdown properties of cryogenic coolants such as $LN_2$ are an important factor of the insulating engineering. Therefore, this paper presented an experimental investigation of breakdown phenomena in $LN_2$ under AC voltage. And we studied the breakdown properties of LN2 with decreasing temperature. Also, the Weibull plots of the breakdown voltage of subcooled $LN_2$ at 65 K for the needle-plane electrode with electrode distance d= 10 mm are studied. The dependence of breakdown voltage for needle-plane and pancake coil-pancake coil electrode on temperature is illustrated. The experimental data suggested that the breakdown voltage of L$N_2$ depend strongly on the temperature of $LN_2$. The breakdown characteristics of $LN_2$ under quasi-uniform and non-uniform electrical field for temperature ranging from 77 K to 65 K were clarified.

MICP를 이용한 Platinum 건식 식각 특성에 관한 연구 (A Study on the Properties of Platinum Dry Etching using the MICP)

  • 김진성;김정훈;김윤택;주정훈;황기웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.279-281
    • /
    • 1997
  • The properties of Platinum dry etching were investigated in MICP(Magnetized Inductively Coupled Plasma). The problem with Platinum etching is the redeposition of sputtered Platinum on the sidewall. Because of the redeposits on the sidewall, the etching of patterned Platinum structure produce feature sizes that exceed the original dimension of the PR size and the etch profile has needle-like shape.[1] Generally, $Cl_2$ plasma is used for the fence-free etching.[1][2][3] The main object of this study was to investigate a new process technology for the fence-free Pt etching. Platinum was etched with Ar plasma at the cryogenic temperature and with Ar/$SF_6$ plasma at room temperature. In cryogenic etching, the height of fence was reduced to 20% at $-190^{\circ}C$ compared with that of room temp., but the etch profile was not fence-free. In Ar/$SF_6$ Plasma, chemical reaction took part in etching process. The trend of properties of Ar/$SF_6$ Plasma etching is similar to that of $Cl_2$ Plasma etching. Fence-free etching was possible, but PR selectivity was very low. A new gas chemistry for fence-free Platinum etching was proposed in this study.

  • PDF

Double Pancake Coil형 고온초전도 변압기의 전기적 절연 특성 (Dielectric Insulation Properties of Double Pancake Coil Type HTS Transformer)

  • 백승명;정종만;이현수;한철수;김상현
    • 한국전기전자재료학회논문지
    • /
    • 제16권2호
    • /
    • pp.151-156
    • /
    • 2003
  • High temperature superconductor can only be applied against an engineering specofication that has to be determined for each particular application form the design requirements for economic viability and for operation margins in service. However, in order to realize the HTS transformer, it is necessary to establish the high voltage insulation technique in cryogenic temperature. Therefore, the composite insulation of double pancake coil type transformer are described and AC breakdown voltage characteristics of liquid nitrogen(LN$_2$) under HTS pancake coil electrode made by Bi-2223/Ag are studied. The Breakdown of LN$_2$ is dominated electrode shape and distance. The influence of pressure on breakdown voltage is discussed with th different electrode. For the electrical insulation design of turn-to-turn insulation for the HTS transformer, we tested breakdown strength of insulation sheet under varying pressure. And we investigated surface flashover properties of LN$_2$ and complex conition of cryogenic gaseous nitrogen(CGN$_2$) obove a LN$_2$ surface. The surface voltage of GFRP was measured as a function of thickness and electrode distance in LN$_2$ and complex condition of CGN$_2$ above a LN$_2$ surface. this research presented information of electrical insulation design for double pancake coil(DPC) type HTS transformer.

저온환경이 선박 및 해양플랜트용 탄소강재의 재료강도특성 및 상선의 최종 종강도 거동에 미치는 영향 (Effects of Low Temperature on Mechanical Properties of Steel and Ultimate Hull Girder Strength of Commercial Ship)

  • 김도균;박대겸;서정관;백점기;김봉주
    • 대한금속재료학회지
    • /
    • 제50권6호
    • /
    • pp.427-432
    • /
    • 2012
  • This paper presents the material properties of carbon steels for ships, and offshore structures (ASTM A131) are tested under a series of arctic and cryogenic temperature conditions. For material tension tests, among the ASTM 131 steels, Grades A and B of mild steel and Grade AH of high tensile steel have been used. The obtained mechanical properties of the materials from the material tension tests were applied in a 13,000TEU class container ship to define the effect of low temperature on the ultimate longitudinal strength of the target structure by using the ALPS/HULL intelligent supersize finite element method. The tensile coupon test results showed increased strength and nonuniform fracture strain behaviors within different grades and temperatures. Increasing the material strength resulted in increasing the ultimate longitudinal strength of the ship.

L-PBF 공정으로 제조된 Fe-15Cr-7Ni-3Mn 합금의 상온 및 극저온(77K) 기계적 특성 (Mechanical Properties of the Laser-powder Bed Fusion Processed Fe-15Cr-7Ni-3Mn Alloy at Room and Cryogenic Temperatures)

  • 박준영;노건우;김정기
    • 소성∙가공
    • /
    • 제33권1호
    • /
    • pp.36-42
    • /
    • 2024
  • Additive manufacturing with 3XX austenitic stainless steels has been widely investigated during a decade due to its high strength, good corrosion resistance, and fair weldability. However, in recently, Ni price drastically increased due to the high demand of secondary battery for electric mobilities. Thus, it is essential to substitute the Ni with Mn for reducing stainless steels price. Meanwhile, the chemical composition changes in stainless steels not only affect to its properties but also change the optimal processing parameters during additive manufacturing. Therefore, it is necessary to optimize the processing parameters of each alloy for obtaining high-quality product using additive manufacturing. After processing optimization, mechanical properties and microstructure of the laser-powder bed fusion processed Fe-15Cr-7Ni-3Mn alloy were investigated in both room (298 K) and cryogenic (77 K) temperatures. Since the temperature reduction affects to the deformation mechanism transition, multi-scale microstructural characterization technique was conducted to reveal the deformation mechanism of each sample.