• 제목/요약/키워드: cryogenic engineering

검색결과 502건 처리시간 0.024초

극저온까지 온도변화에 따른 질소 충전 소형 금속 벨로우즈의 변형 해석 (Deformation Analysis of Miniature Metal Bellows Charged Nitrogen for Temperature Change to Cryogenic Condition)

  • 이승하;이태원
    • 한국정밀공학회지
    • /
    • 제26권10호
    • /
    • pp.81-88
    • /
    • 2009
  • Bellows is used to control temperature of a Joule-Thomson micro cryocooler. It is made of Nickelcobalt alloy that retains mechanical properties from cryogenic temperature to temperature of 570K. The geometry of bellows is an axisymmetric shell and Nitrogen with high pressure was charged at temperature of 293K. During cool-down process, the pressure and volume of Nitrogen are changed and must be satisfied with state equation. At cryogenic temperature, Nitrogen can exist as a part liquid and part vapor. Pressure-density-temperature behavior under this vaporliquid phase equilibrium is closely given by the Modified-Benedict-Webb-Rubin(MBWR) state equation. To evaluate deformation of bellows for temperature change, the numerical calculation of the volume within bellows and finite element analysis of bellows under internal pressure were iteratively performed until MBWR state equation is satisfied. The numerical results show that deformation of the bellows can be analyzed by the present method in a wide range of temperature including cryogenic temperature.

Conceptual design of hybrid electric vertical take-off and landing (eVTOL) aircraft with a liquid hydrogen fuel tank

  • Kim, Jinwook;Kwon, Dohoon;Jeong, Sangkwon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권2호
    • /
    • pp.27-38
    • /
    • 2022
  • Urban air mobility (UAM) has recently attracted lots of attention as a solution to urban centralization and global warming. Electric vertical take-off and landing (eVTOL) is a concept that emerges as one of the promising and clean technologies for UAM. There are two difficult challenges for eVTOL aircraft to solve. One is how to improve the weight efficiency of aircraft, and the other is how to complete long-range missions for UAM's flight scenarios. To approach these challenges, we propose a consolidated concept design of battery-fuel cell hybrid tiltrotor aircraft with a liquid hydrogen (LH2) fuel tank. The efficiency of a battery-fuel cell hybrid powertrain system on the designed eVTOL aircraft is compared to that of a battery-only powertrain system. This paper shows how much payload can increase and the flight scenario can be improved by hybridizing the battery and fuel cell and presenting a detailed concept of a cryogenic storage tank for LH2.

Mechanism of Cryogenic Shredding Process of Scrap Tire

  • Taipau Chia;Shanshin Ton;Shu, Hung-Yee;Chien, Yeh-chung;Lee, Ming-Huang
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.225-229
    • /
    • 2001
  • There are about 41% (by weight) of scrap tires were pulverized to produce rubber powder and granules in the tire recycling industry of Taiwan. However, the reuse of the by-products, steel and fiber, of the scrap tires still needs to be improved. It is difficult to remove the remaining rubber on the surface of steel or fiber. This problem reduce the availability for further reuse of steel and fiber. In addition to the improvement of magnetic, gravity separation techniques or carbonization process, using cryogenic shredding process to separate rubber and fiber (or steel) had been used as another alternative. Cryogenic shredding process for scrap tires showed many advantages, the objective of this paper is to explore the mechanisms for the cryogenic shredding process of scrap tires. Cryo-SEM is used to investigate the topographic information, in-situ, from room temperature to -195$^{\circ}C$ . One square inch shredded tire chips are prepared for SEM study. The percentage of the shrinkage of rubber is also estimated, ca. 6.7%. Mechanisms of cryogenic shredding effects on the tire chips are discussed. The proper practice of cryogenic shredding process far scrap tires is also suggested.

  • PDF

300 W급 브레이튼 냉동기용 극저온 터보 팽창기 구동축 설계 (Design of a Cryogenic Turbo Expander Drive Shaft for 300 W Class Brayton Refrigerators)

  • 김만렬;이창형;김동민;양형석;김석호
    • 한국기계가공학회지
    • /
    • 제15권6호
    • /
    • pp.129-135
    • /
    • 2016
  • There have been many types of development and commercialization efforts for superconducting power applications with the continuous development of High Temperature Superconducting (HTS) conductors. In particular, HTS power cables are going to be commercialized in real power grids. A cryogenic refrigeration system should be used to keep it below 77 K, and its required cooling capacity continuously increases as the unit length of the HTS power cable increases. Among the many kinds of cryogenic refrigerator, a reverse Brayton refrigerator that uses turbo expanders is a promising refrigerator due to its efficiency and reliability. Among the various components in refrigerators, the cryogenic turbo-expander is the most important part for increasing efficiency and assuring reliability. The design of a 300 W class turbo-expander is described in this paper prior to the development of a 10 kW class turbo expander, which is the required capability for the commercialization of a HTS power cable. The impeller shape and rotation speed are determined based on the cycle analysis. The Eigen frequency and harmonic analysis are conducted with gas bearings at cryogenic temperatures to determine the operational stability.

극저온 냉각 및 나노유체 극미량 윤활을 적용한 티타늄 합금의 선반 절삭가공 특성에 관한 연구 (Experimental Characterization of Turning Process of Titanium Alloy Using Cryogenic Cooling and Nanofluid Minimum Quantity Lubrication)

  • 김진우;김정섭;이상원
    • 한국정밀공학회지
    • /
    • 제34권3호
    • /
    • pp.185-189
    • /
    • 2017
  • Recently, titanium alloys have been widely used in aerospace, biomedical engineering, and military industries due to their high strength to weight ratio and corrosion resistance. However, it is well known that titanium alloys are difficult-to-cut materials because of a poor machinability characteristic caused by low thermal conductivity, chemical reactivity with all tool materials at high temperature, and high hardness. To improve the machinability of titanium alloys, cryogenic cooling with LN2 (Liquid Nitrogen) and nanofluid MQL (Minimum Quantity Lubrication) technologies have been studied while turning a Ti-6Al-4V alloy. For the analysis of turning process characteristics, the cutting force, the coefficient of friction, and the surface roughness are measured and analyzed according to varying lubrication and cooling conditions. The experimental results show that combined cryogenic cooling and nanofluid MQL significantly reduces the cutting forces, coefficients of friction and surface roughness when compared to wet condition during the turning process of Ti-6Al-4V.

극저온용 구조재료의 파괴인성평가법에 관한 연구 (A study on the fracture toughness evaluating method for cryogenic structural material)

  • 권일현;정세희
    • 대한기계학회논문집A
    • /
    • 제22권1호
    • /
    • pp.64-72
    • /
    • 1998
  • This paper was undertaken to develop the fracture toughness testing method using small and single specimen compared to the conventional method in evaluating elastic-plastic fracture toughness of the superconducting magnet structural material at cryogenic temperature. The elastic-plastic fracture toughness test was conducted by using the unloading compliance method recommended by ASTM E813-89 to accomplish the above purpose. And, the 20% side-grooved 0.5TCT and 1TCT specimens were used to evaluate the fracture toughness by using as possible as miniaturized CT specimen. The unloading compliance method was a very useful method in evaluating elastic-plastic fracture toughness at cryogenic temperature. It could be taken valid fracture toughness values by using 20% side-grooved 0.5TCT specimen recommended by ASTM E813-89.

초저온 피스톤 펌프의 성능 향상에 관한 연구 (The Study on Development of Performance in Cryogenic Piston Pump)

  • 이종민;이종구;이광주;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제25권3호
    • /
    • pp.240-246
    • /
    • 2014
  • In order to develop a universal cryogenic piston pump of small size for increasing utilization of liquid hydrogen, dynamic compression performance of piston pump were evaluated and improvements were also discussed for piston rod and piston tip. The cryogenic piston pump has crosshead structure and inclined cup shape piston tip. As the results, it was found that i) insulation of heat flow from piston-rod part is required for stable operation ii) improving the self-clearance adjustment effect of piston tip and reducing piston eccentricity were desirable to promote pumping pressure and operating range.

LNG 배관 시스템용 1인치 글로브 밸브 개발 및 성능실험 (Development and Performance Test on the 1-Inch Glove Valve for the LNG Piping System)

  • 이중섭;이치우
    • 한국기계가공학회지
    • /
    • 제16권1호
    • /
    • pp.9-16
    • /
    • 2017
  • This study describes the development of a 1-inch cryogenic glove valve for an LNG pumping system and localization development achieved through the performance test. The cryogenic valve used in the LNG pumping system plays an important role in maintaining a flow rate by LNG transportation. This trial manufactured goods, which was achieved through reverse engineering and developing the assembly process. The result of the leak test satisfied the internal pressure condition using the 78-bar normal temperature test and maintained the anti-leakage condition. Also, the result of the cryogenic leak test (BS 6364: low temperature test procedure) maintained anti-leakage at -196 and 52 bar, which satisfied the test standards.

CFD Simulation of thermoacoustic oscillations in liquid helium cryogenic system

  • wang, xianjin;niu, xiaofei;bai, feng;zhang, junhui;chen, shuping
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권1호
    • /
    • pp.1-6
    • /
    • 2021
  • Thermoacoustic oscillations (TAOs) could be often observed in liquid helium cryogenic system especially in half-open tubes. These tubes have closed warm end (300K) and open cold end (usually 4.4K). This phenomenon significantly induces additional heat load to cryogenic system and other undesirable effects. This work focuses on using computational fluid dynamics (CFD) method to study TAOs in liquid helium. The calculated physical model, numerical scheme and algorithm, and wall boundary conditions were introduced. The simulation results of onset process of thermoacoustic oscillations were presented and analyzed. In addition, other important characteristics including phase relation and frequency were studied. Moreover, comparisons between experiments and the CFD simulations were made, which demonstrated thevalidity of CFD simulation. CFD simulation can give us a better understanding of onset mechanism of TAOs and nonlinear characteristics in liquid helium cryogenic system.

Study of thermoacoustic oscillations in half-open tubes for saturated superfluid helium

  • Wang, Xianjin;Niu, Xiaofei;Bai, Feng;Zhang, Junhui;Chen, Shuping
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권3호
    • /
    • pp.68-73
    • /
    • 2022
  • Thermoacoustic oscillations (TAOs) are spontaneous pressure oscillations frequently seen in hydrogen or helium cryogenic systems. Half-open tubes connected to cryogenic fluid with a closed room temperature end have a high potential for oscillation generation. Thermoacoustic oscillations will result in significant pressure fluctuations and additional heat load, endangering the security and stability of the cryogenic system. The goal of this paper is to investigate TAOs in superfluid helium using both theoretical and experimental methods. Five half-open tubes with varied typical inner diameters inserted into superfluid helium were installed in a test cryostat. The onset characteristics of thermoacoustic oscillations were presented and studied. The effect of temperature profile was discussed. Finally, a simple eliminating method was introduced.