• Title/Summary/Keyword: crushing load

Search Result 120, Processing Time 0.029 seconds

A Study on Crushing Characteristic of Hatted Section Tube (모자형 단면부재의 압괴특성 연구)

  • 김천욱;한병기;김병삼
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.212-219
    • /
    • 2002
  • In the frontal collision of cars, front parts of cars such as engine rail and side members that are composed of hatted section tubes should absorb most of the collision energy far the passenger compartment not to be deformed. For these reasons the study on the collapse characteristics, maximum crushing load and energy absorption capacity of hatted section tubes are needed. In this study, top hatted section tubes and double hatted section tubes are investigated. The maximum crushing load of hatted section tubes is induced from plastic buckling stress of plates by considering that the hatted section tubes are composed of plates with each different boundary conditions and that its material has a strain hardening effect. On this concept maximum crushing load equations of hatted section tubes are derived and verified by experiments. from the results of experiment, the differences of collapse characteristics between top hatted section tube and double hatted section tube are analysed. And mean crushing loads of hatted section tubes from experiments are compared with other theory.

Crushing Characteristics of Single Particle of Recycled Aggregate from Waste Concrete (폐콘크리트 순환골재의 단입자 파쇄 특성)

  • Park, Sung-Sik;Kim, Sang-Jung;Moon, Hong-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.23-32
    • /
    • 2016
  • A single particle crushing test was carried out for recycled aggregates from waste concrete while demolishing various structures. When the recycled aggregates were used for backfill or road subbase materials, load-displacement and crushing characteristics were analyzed. The recycled aggregates with hydrates and aggregates were sorted into 40 mm size (75-40 mm) and 20 mm size (40-20 mm). At initial loading, their irregular surface was closed to and then crushed by loading plate. Such first crushing stage was called 'Surface crushing'. Further loading, some hydrate was crushed and detached from aggregate, and such process repeated several times. This state is called 'hydrate crushing'. The final state is called 'aggregate crushing' in which aggregate crushed and following load suddenly dropped down. As the load increased, such crushing cycle is repeated several times. The shapes of aggregates are round or square, and triangle or long shaped. Depending on their shapes and surface conditions, they crushed in different ways. The 63% of aggregates showed more than 50% load reduction due to aggregate crushing. The 90% load reduction occurred at 15% of aggregates. The 40 mm aggregate crushed at maximum load between 3.05-4.38 kN and 70% of crushed aggregates were less than 20 mm.

Semi Empirical Analysis on the Crushing Mechanism of Thin-Walled Rectangular Tubes (박판 4각튜브의 반실험적 압괴메카니즘 해석)

  • Kim, Cheon-Uk;Han, Byeong-Gi;Im, Chae-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.12-21
    • /
    • 1997
  • A model for analysis of the crushing mechanism of thin-walled rectangular tube is presented. The crushing modes of rectangular tubes may be characterized as either compact or noncompact and the model presented only considers compact modes. The unloading process in the crushing are categorized into three different stages where the distinction is based on the ratio of outward to inward fold length. Using the kinematic relations and the energy conservation principle, the instantaneous crush load is derived. An approximate equation that considers the rolling behavior is also given so that the crush load history may be established. The equation is experimentally proved.

Design of Energy Absorption Device Using the Axial Crushing Behavior of Truncated Cone Type Cylinder (콘 형상 실린더의 축 방향 압축변형을 이용한 충격흡수장치 설계)

  • 김지철;이학렬;김일수;심우전;박동화
    • Tribology and Lubricants
    • /
    • v.19 no.5
    • /
    • pp.259-267
    • /
    • 2003
  • A brake device for the high-speed impacting object is designed using an axial crushing of thin-walled metal cylinder. Thickness of the cylinder is increased smoothly from the impacting end to the fixed end, resulting in the truncated cone shape. Truncated cone shape minimizes the imperfection-sensitivity of the structure and ensures that plastic hinges are formed sequentially from impacting end. This prevents the undesirable sudden rise in the first peak-crushing load. Several specimens with different conic angles, mean thickness of the wall, and materials were designed and quasi-static compression tests were performed on them. Results indicate that adoption of appropriate conic angle prevents simultaneous wrinkles generation and sudden rise of crushing load and that appropriate conic angle differs in each case, depending on the geometry and material property of the cylinder. Finite element analysis was performed for static compression of the cylinder and its accuracy was checked for the future application.

A Methodology and Reliability for Selecting the Optimal Model among Ten Models of Crushing Machine with Various Constraints (다양한 제약조건을 갖는 열개의 파쇄장비 모델들 중 최적 모델 선정을 위한 방법과 신뢰성)

  • Leem Young Moon;Hwang Young Seob
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.1
    • /
    • pp.159-166
    • /
    • 2005
  • It is not difficult to see the road repairing. There are many and various machines which crush road surface. The efficiency and power of the machine depend on crushing head-shape, crushing interval, crushing load, crushing stress, machine's dropping height and roller's kind. The objective of this study is to select the optimal model among ten models of crushing machine with constraints such as crushing depth, variation, and crushed particle size. And then this paper provides the valid theoretical base on selected model. The data for this study are chosen from the site of construction in Kangnung during three months (2004. 6. 1${\~}$2004. 8. 31). The provided methodology in this paper will be fruitful not only for the selection of crushing machine but also for the aspects of construction period, cost, work efficacy according to the condition from the various sites of construction.

A Study for Selecting the Optimal Model among Ten Models of Crushing Machine with Various Constraints Related to Road Repairing (도로공사에 관련된 많은 제약조건을 갖는 열개의 파쇄장비 모델들 중 최적 모델 선정에 관한 연구)

  • Im Yeong Mun;Hwang Yeong Seop
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.11a
    • /
    • pp.125-130
    • /
    • 2004
  • It is not difficult to see the road repairing. There are many and various machines that can crush road surface. The efficiency and power of the machine depend on crushing head-shape, crushing interval, crushing load, crushing stress, machine's dropping height and roller's kind. The objective of this study is to select the optimal model among ten models of crushing machine with constraints such as crushing depth, variation, and crushed particle size. The data for this study are chosen from the site of construction in Kangnung during three months ($2004.\;6.\;1\;\sim\;2004.\;8.\;31$). The provided methodology in this paper will be fruitful not only for the selection of crushing machine but also for the aspects of construction period, cost, work efficacy according to the condition from the various sites of construction.

  • PDF

Relationship between the CMOD and the Load-Line Deflection of Concrete (콘크리트의 균열개구 변위와 하중방향 변위관계)

  • 김석기
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.183-194
    • /
    • 1997
  • Traditional displacmir~nt measurement included an extrancous and cvrntlc. portmn due to test setup and support crushing. The magnitudc of this erroneous deformation was found to be of the same order as the actual displacement, leading to inaccurate determinations of fracture parameters. To overcome this problem, the load-CMOD relationship is a more reliable parameter for determining the fracture characteristics because it is unaffected by the specimen setup and any support crushing. An important step towards the use of load-(:MOD concept as a key fracture parameter depends on relating the CMODto the traditional load-line deflection. This investigation found that there was an unique linear relationship between the CMOD and the load-line deflection. The exact numeric value of relationship between the CMOD and the deflection. that is, the slope ofthe line, is discovered to be a material property. The relationship finds a problem with the existing IZIL,EM recommendations for. measuring the fracture energy of concrete. A proposal to correct the problem is made.

A Study on the energy absorption characteristics of GFRP circular tubes fabricated by the filament winding method (Filament winding 공법 GFRP 원형튜브의 에너지 흡수특성에 관한 연구)

  • Kim, Geo-Young;Koo, Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2059-2065
    • /
    • 2008
  • In this paper, quasi-static crushing tests of composite circular tubes under axial compression load are conducted to investigate the energy absorption characteristics. Circular tubes used for this experiment are glass/epoxy (GFRP) composite tubes, which is fabricated by the filament winding method. One edge of the composite tube is chamfered to reduce the initial peak load and to prevent catastrophic failure during crushing process. Two suggested trigger mechanisms for the composite tubes are investigated. Crushing modes are mainly affected by thickness/diameter ratio, and average crushing loads are mainly affected by their cross-sections. Energy absorption characteristics vary significantly as a function of the tube geometry, trigger mechanism, t/D ratio and the cross-sectional shape.

  • PDF

Energy absorption characteristics of diamond core columns under axial crushing loads

  • Azad, Nader Vahdat;Ebrahimi, Saeed
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.605-628
    • /
    • 2016
  • The energy absorption characteristics of diamond core sandwich cylindrical columns under axial crushing process depend greatly on the amount of material which participates in the plastic deformation. Both the single-objective and multi-objective optimizations are performed for columns under axial crushing load with core thickness and helix pitch of the honeycomb core as design variables. Models are optimized by multi-objective particle swarm optimization (MOPSO) algorithm to achieve maximum specific energy absorption (SEA) capacity and minimum peak crushing force (PCF). Results show that optimization improves the energy absorption characteristics with constrained and unconstrained peak crashing load. Also, it is concluded that the aluminum tube has a better energy absorption capability rather than steel tube at a certain peak crushing force. The results justify that the interaction effects between the honeycomb and column walls greatly improve the energy absorption efficiency. A ranking technique for order preference (TOPSIS) is then used to sort the non-dominated solutions by the preference of decision makers. That is, a multi-criteria decision which consists of MOPSO and TOPSIS is presented to find out a compromise solution for decision makers. Furthermore, local and global sensitivity analyses are performed to assess the effect of design variable values on the SEA and PCF functions in design domain. Based on the sensitivity analysis results, it is concluded that for both models, the helix pitch of the honeycomb core has greater effect on the sensitivity of SEA, while, the core thickness has greater effect on the sensitivity of PCF.

Dynamic Effects for Crushing Strength of Rectangular Tubular Members (사각 튜브 부재의 압괴강도에 대한 동적 영향 평가)

  • P.D.C.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-23
    • /
    • 1990
  • When a thin walled member is subjected to compression in a condition such as collision, the energy is mainly absorbed by axial crumpling. In this case, dynamic crushing strength of the member is increased due to the effects of strain-rate compared with the static strength, even though the inertia effect is neglected. In this paper, the method of predicting the static crushing for tubular members is presented using the kinematic method of plasticity. Since, a predicted crushing load, taking account of the dynamic yield stress, usually overestimates the effects of strain-rate, the average plastic flow stress for the effects of strain-rate is used to obtain the dynamic crushing load for tubular members. The analytical results are compared with the experiments published in references, and a good correlation is observed.

  • PDF