• Title/Summary/Keyword: crushed waste glass

Search Result 21, Processing Time 0.025 seconds

Effect of crushed waste glass as partial replacement of natural fine aggregate on performance of high strength cement concrete

  • Ajmal, Paktiawal;Mehtab, Alam
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.251-277
    • /
    • 2022
  • Disposal of industrial waste in cities where municipal authorities permitting higher floor area ratio coupled with increasing living standards, a lot of demolition waste is being generated. Its disposal is a challenge particularly in megacities where no landfills are available. The ever-increasing cost of building construction materials also necessitates consuming demolition wastes in a useful manner to save fresh natural raw materials. In the present work, the crushed waste glass is used in high-strength concrete as a partial replacement of fine aggregate. The control concrete of grade M60 was proportioned following BIS 10262-2009. The crushed waste glass has been used as a partial replacement with varying percentages of 10, 20, 30, and 40% by weight of fine aggregate. Experimental tests were carried on the fresh and hardened state of the concrete. The effect of crushed waste glass on the workability of the concrete has been investigated. Non-destructive tests, acid attack tests, compressive strength, split tensile strength, and X-ray diffraction analysis was carried out for the control concrete and concrete containing crushed waste glass after 7, 28, and 270 days of normal curing. The results show that for the same w/c ratio, the workability of concrete increases with increasing replaced crushed waste glass content. However, the decrease in compressive strength of the concrete after 28 days of normal curing and further after 28 days of acid attacks, up to 30% replacement level of fine aggregate by the crushed waste glass is insignificant.

Acid Resistance of Unsaturated Polyester Mortar Using Crushed Wate Glass (폐유리를 골재로 사용한 불포화폴리에스테르 모르타르의 내산성에 관한 연구)

  • 한창호;최길섭;김완기;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.339-342
    • /
    • 2000
  • Recently, the importance of the conutermeasures for waste materials has pointed out. Waste glass is also one to waste materials used for the recycling in construction sites. The crushed waste glass has been used to make a glass polymer composite that can be applied for sewer, storm drain pipe and interlocking block, etc. In this study, the crushed waste glass is explored with the possibility of recycling it, as a substitute for fine aggregates. The prepose of this investigation is to improve the strengths and acid resistance of the UP mortars using crushed waste glass. The UP mortars are prepare with blast furnace slag fly ash filler. the UP-fine aggregate ratios the crushed waste glass replacements for fine aggregate are tested strengths before and after immersion(H (아래첨자2)SO(아래첨자4) 10%), weight change and acid resistance are also tested. From the test results, the relative strength or UP mortars using fly ash as filler are found to be somewhat superior to that of the UP mortars using blast furnace as filler, And a UP mortar with fly ash as a filler, a UP-fine aggregate ratio of 15% and a waste glass replacement if 50% for fine aggregate is recommended as optimal mix proportion of UP mortar using crushed waste glass. Accordingly, it is enough to assure the use of the crushed waare glass as an aggregate for the production of UP mortar.

  • PDF

An Engineering Properties of Concrete Containing Waste Glass (폐유리를 혼입한 콘크리트의 공학적 특성)

  • 라재웅;신재인;오성진;구봉근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.138-143
    • /
    • 2000
  • In this paper, we carried out experiment to use crushed waste glass as a fine aggregate. This study delt with the comparative analysis on the construction works and engineering properties of concrete containing crushed waste glass through physical experiment. The experimental variables are crushed waste glass substitution ratio and W/C(38, 53%). When the W/C was 38%, we could know that concrete containing crushed waste glass was good as general concrete on the construction works and engineering properties but the concrete containing crushed waste glass applied W/C 53% was not good as general concrete on those. Therefore, concrete containing crushed waste glass applied W/C 53% should use admixture on the site.

  • PDF

An Experimental Study on the Properties of Mortar with Powdered Waste Glasses (폐유리 미분말을 혼입한 모르타르의 특성에 관한 실험적 연구)

  • Kim, Ho-Soo;Baek, Chul-Woo;Park, Cho-Bum;Jeun, Jun-Young;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.805-808
    • /
    • 2006
  • At the present time, as part of the movement of natural resource conservation, there have been doing many recycling research works for wasted concrete, etc. In this study, we carried out an experiment for using crushed waste glass as a binder. It dealt with comparative analysis of the engineering properties of mortar containing crushed waste glass through a physical experiment. The experimental variables are the crushed waste glass powder substitution ratio(C-type : $0{\sim}25%$, B-type : $0{\sim}50%$, F-type : $0{\sim}100%$). According to this study, As the substitute of waste glass powder increases, air content and unit weight, the compressive strength decreases exactly proportion to the substitute ratio of waste glass powder. if, when waste glass is substituted as the binder, it is necessary to use an admixture.

  • PDF

A Study on the Strength of Mortar Substituted Fine Aggregate by Waste Glass Color (폐유리 색상별 잔골재를 치환한 모르타르의 강도에 관한 연구)

  • Jo, Su Yeon;Kim, Geon U;Shin, Joung Hyeon;Jung, Ui In;Kim, Bong Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.112-113
    • /
    • 2021
  • Since natural sand is being depleted, research is being conducted to use glass similar to sand as an aggregate. When non-reusable waste glass is crushed and used as fine aggregate, it is known that alkali of cement and silica of glass react to cause an alkali aggregate reaction. The purpose of this study is to provide basic data by studying the strength according to color to use waste glass as fine aggregate. When 10% was replaced, both flexural and compressive strength showed strength values similar to those of Plain. When replaced by 20% and 30%, the 7-day intensity was higher than that of Plain. In addition, colorless glass was found to have the highest strength among glass colors. More research is expected to be needed to become a fine aggregate of waste glass.

  • PDF

A review on pavement porous concrete using recycled waste materials

  • Toghroli, Ali;Shariati, Mahdi;Sajedi, Fathollah;Ibrahim, Zainah;Koting, Suhana;Mohamad, Edy Tonnizam;Khorami, Majid
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.433-440
    • /
    • 2018
  • Pavements porous concrete is a noble structure design in the urban management development generally enabling water to be permeated within its structure. It has also capable in the same time to cater dynamic loading. During the technology development, the quality and quantity of waste materials have led to a waste disposal crisis. Using recycled materials (secondary) instead of virgin ones (primary) have reduced landfill pressure and extraction demanding. This study has reviewed the waste materials (Recycled crushed glass (RCG), Steel slag, Steel fiber, Tires, Plastics, Recycled asphalt) used in the pavement porous concretes and report their respective mechanical, durability and permeability functions. Waste material usage in the partial cement replacement will cause the concrete production cost to be reduced; also, the concretes' mechanical features have slightly affected to eliminate the disposal waste materials defects and to use cement in Portland cement (PC) production. While the cement has been replaced by different industrial wastes, the compressive strength, flexural strength, split tensile strength and different PC permeability mixes have depended on the waste materials' type applied in PC production.

A Few Remarks on the Alkali-aggregate Reaction of Recycled-glass Concrete

  • Inada, Yoshinori;Kinoshita, Naoki;Matsushita, Seigo
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.549-554
    • /
    • 2001
  • The authors have proposed that waste glass, which is crushed to pieces, can be used as a concrete aggregate. At the present time, recycled-glass concrete is used for sidewalk concrete blocks and pavement as glass is ornamental. However, in cases where recycled-glass concrete is used for structural concrete, strength and durability are required as structural concrete is exposed to the weather. Glass that is used generally is a mixture of SiO$_2$, Na$_2$O and CaO. SiO$_2$is the most likely cause of alkali-aggregate reaction when waste glass was used for concrete aggregate. In this study, an alkali-aggregate reaction test that is one of the important tests related to durability of aggregate was carried out far discussion of utilization of waste glass for concrete aggregate. From the results of the tests, it is found that glass is a reactive aggregate. The pessimum proportion of glass is about 75%. Then the cases of using fly ash, blast furnace slag and artificial zeolite for admixture materials were also examined for the purpose of prevention of alkali-aggregate reaction. from the results of the test, it was found that using them is an effective way to prevent alkali-aggregate reaction. The compressive strength in the cases of using admixture materials is larger than that without admixture materials.

  • PDF