• Title/Summary/Keyword: crushed fine aggregates

Search Result 66, Processing Time 0.028 seconds

A Study on the Evaluation of the Durability of Concrete Using Copper Slag Aggregates (동슬래그 골재를 함유한 콘크리트의 내구성 평가 연구)

  • Lee, Mun-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.773-784
    • /
    • 2008
  • Even if the exploitation of copper slag produced during the smelting process of copper as aggregate for construction purpose has been permitted since 2004 in Korea, the lack of sufficient data enabling to evaluate its long-term stability that is its durability has to date impeded its application. This study intends to investigate experimentally the durability characteristics of 18 and 27 MPa-class commercial concretes in which natural sand (fine aggregates) has been partially replaced by copper slag through accelerated and exposure tests so as to provide bases promoting the application of copper slag concrete. The experimental results revealed insignificant difference of the durability characteristics in most of the mix proportions in which 30% of natural sand was replaced by copper slag. In the case where crushed sand was adopted, tests verified similar characteristics for replacement ratio of 50%. Particularly, the results of the exposure test conducted during 8 years demonstrated that equivalent level of durability was secured compared to the case using natural sand. In the case of 18MPa-class lower grade concrete, exposure test verified also that the physical lifetime similar to 50 years could be secured until carbonation reaches cover depth of 20 mm.

Strength and Absorption Properties of Cement Mortar Produced with Various Content of Sludge Powder at Mines (석산에서 발생하는 슬러지 미립분의 혼입률 변화에 따른 시멘트 모르타르의 강도 및 흡수 특성)

  • 한천구;신병철;김기철;이상태
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.561-567
    • /
    • 2001
  • It is reported that a lot of sludge powder is produced during the process of manufacturing crushed fine aggregate in mines. However, there is a limitation on the its use that most of them are disposed and wasted, which cause environmental pollution. Therefore, in this paper, tests are carried out in order to recycle sludge powder as filler for cement mortar products. Kinds of aggregates and mix proportion of mortar are varied under various contents of sludge powder. According to test results, it is found that cement mortar products using sludge powder as substitution of fine aggregate about 10% have better qualities than those without sludge powder.

Engineering Properties of Concrete using of Coal Gasification Slag as the Fine Aggregates (석탄가스화 용융슬래그를 잔골재로 치환한 콘크리트의 공학적 특성)

  • Park, Kyung-Taek;Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.194-201
    • /
    • 2019
  • This study analyzed the properties of concrete depending on the coal gasification slag(CGS) contents in order to examine the applicability of CGS as the fine aggregate for concrete. Experimental results, trended that the slump and slump flow increased with increasing CGS contents, and air contents has decreased. Evaluation index for segregation of normal strength concrete(EISN) is showed was good from CGS 25% when using crushed sand A(CSa) and CGS 50% when using mixed sand(MS). The compressive strength decreased with increasing CGS contents when CSa was used. However, when MS was used, the maximum value was CGS 50% due to parabolic tendency. Depending on fine aggregates type, compared with compressive strength of CSa was about 8% higher than that of MS, and depending on the use or unuse of CGS, more advantageous at higher strength than low strength. As a result of relative performance study on the quality of concrete according to the CGS contents, it is considered that CGS can be positively contributed to enhancement of workability and strength development when mixed with fine aggregate around 25~50%.

Strength, Absorption and Interfacial Properties of Mortar Using Waste Shells as Fine Aggregates (잔골재를 패각으로 치환한 모르터의 강도, 흡수율 및 계면 결합형태)

  • Moon, Hoon;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.523-529
    • /
    • 2014
  • Large amounts of waste shells have been produced each year from shellfish raising industries located in Korean costal areas. Due to the limited space for the waste shell disposal, the related environmental problem has been a serious issue. It is believed that using the waste shells as a source of aggregate for mortar, concrete or bricks can be a good solution. In this research, possibility of utilizing waste shells as an aggregate of mortar is investigated. Waste shells of manila clam, cockle, clam, sea mussel, and oyster were properly crushed, sieved, and sorted to meet the requirements of the grading of standard fine aggregate. After that, the waste shells were used as partial and total replacement of the fine aggregate, and their absorption and 28-day compressive strengths of mortar were measured. In general, replacement of waste shells increased the absorption and decreased the strength. However, one specimen with cockle increased compressive strength as replacement ratio increased. Mortar with cockle of 50% and 100% replacement showed higher compressive strength than that of control mortar. This increase of compressive strength was found to be affected by the strong interfacial bonding properties of the cockle and a cement matrix.

Characteristics of Thermal Conductivity of Concrete Containing Fine Bottom Ash Aggregates (바텀애시 경량골재를 사용한 콘크리트의 열전도율 특성)

  • Park, Ji-Hun;Jung, Hoe-Won;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.596-603
    • /
    • 2020
  • In this paper, an experimental study was conducted to investigate the applications of bottom ash, which is an industrial by-product obtained from thermal power plants. Bottom ash was used as fine aggregate in this study, and an experiment was conducted to determine the characteristics of the bottom ash aggregate. In addition, 25, 50, 75, and 100% contents of crushed (natural) fine aggregate were replaced with bottom ash aggregate to produce concrete mixture including bottom ash. Thereafter, test results of the unit weight, ultrasonic velocity, compressive strength, and thermal conductivity of bottom ash concrete were obtained. Moreover, the effect of the curing ages of 28 and 91 days on the material characteristics of bottom ash concrete were identified. Test results showed that bottom ash used as fine aggregate had pozzolanic reaction. Finally, based on the extensive experimental results, relationships between thermal conductivity and unit weight, ultrasonic velocity, and compressive strength was suggested.

The Characteristics on Infiltration of Fine-Grained Soil into Various Materials for Ground Drainage (지반 배수재에 따른 세립토의 관입특성)

  • Koh, Yongil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.11
    • /
    • pp.39-43
    • /
    • 2015
  • In this study, the infiltration quantity of fine-grained soil into coarse-grained soil or aggregate for methods to accelerate consolidation drainage is checked by laboratory tests under various conditions and those characteristics on infiltration are examined closely. Irrespectively of pressures to fine-grained soil corresponding to stresses in a soil mass or moisture contents of fine-grained soil, fine-grained soil does not infiltrate into standard sand and marine sand, so it is verified that drain-resistance into sand mass of drainage / pile does not occur entirely and its shear strength would increase highly by water compaction. It is known that the infiltration depth of fine-grained soil into aggregate increases according that those size is larger in case of aggregates and it increases according that the pressure or the moisture contents is higher in case of same size aggregate. It is thought that drain-resistance into aggregate mass of drainage / pile would occurs by infiltrated fine-grained soil in advance though the infiltration depth of fine-grained soi of lower moisture content than liquid limit into 13 mm aggregate is low quietly. So gravel drain method or gravel compaction pile method, etc. using aggregate of gravels or crushed stones, etc. larger than sand particle size should be not applied in very soft fine-grained soil mass of higher natural moisture contents than liquid limit, and it is thought that its applying is not nearly efficient also in soft fine-grained soil mass of lower natural moisture contents than liquid limit.

Status of Ready-Mixed Concrete Plants and Raw Materials in Pusan (부산지역 레미콘 플랜트 및 원재료 현황)

  • Yoo, Seung-Yeup;Koo, Ja-Sul;Lee, Yang-Soo;Moon, Hyung-Jae;Kim, Jung-Jin;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.641-644
    • /
    • 2008
  • This paper investigated the plant and raw material of the ready-mixed concrete company which could supply to the second Lotte World on Pusan. the results were summarized as following. Almost plants were mainly using Twin shaft mixer which was 210m$^3$/hr and horizontal type. There was different the number of admixture silos at each plants, and they were separated by types. The mixtures mainly consisted of the ordinary portland cement, fly ash and blast furnace slag. For favorable quality control, each materials had to carry from same factories, and the monitering standard for quality control should be prepared. The coarse aggregates were used with many different producing districts, so they were only used from Y caused by exclusion of quality difference. The crushed, washed and river sands were generally used as fine aggregates, so the fine aggregates which could be possible to supply stable quality were chosen. This study used Poly Carbonic Acid Admixture which was developed to satisfy maintenance of performance till 2 hours and 10MPa at 15 hours.

  • PDF

A Study of Characteristics Change of Low-Shrinkage Normal Strength Concrete According to Mixing Factors and curing Temperature (배합요인과 양생온도에 따른 일반강도 초저수축 콘크리트의 특성 변화 연구)

  • Jeong, Jun-Young;Min, Kyung-Hwan;Lee, Dong-Gyu;Choi, Hong-sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.342-347
    • /
    • 2016
  • This study examined the effects of the coarse aggregate maximum size and grading of fine aggregates to acquire the characteristics of very low shrinkage on normal strength concrete mixed in the field. In addition, the shrinkage characteristics of concrete under construction were evaluated in accordance with the curing temperature. The compressive strength and drying shrinkage tests were performed for nine mixing factors composed of the coarse aggregate size (13, 20, and 25 mm), types of fine aggregate (see sand, crushed sand, and blended sand), and curing temperatures (5, 20, and $35^{\circ}C$). To acquire low shrinkage properties under $350{\mu}{\varepsilon}$ strain on normal strength concrete, a 25 mm maximum of coarse aggregate was available, and the grading of fine aggregate affected the shrinkage of concrete. In addition, very low shrinkage properties were acquired in the curing temperature range except cold and hot weather concrete.

Manufacturing artificial lightweight aggregates using coal bottom ash and clay (석탄 바닥재와 점토를 이용한 인공경량골재 제조)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.277-282
    • /
    • 2007
  • The artificial lightweight aggregate (ALA) was manufactured using coal bottom ashes produced from a thermoelectric power plant with clay and, the sintering temperature and batch composition dependence upon physical properties of ALA were studied. The bottom ash (BA) had 13wt% coarse particle (>4.75mm) and showed very irregular shape so should be crushed to fine particles to be formed with clay by extrusion process. Also the bottom ash contained a many unburned carbon which generates the gas by oxidation and lighten a aggregate during a sintering process. Plastic index of green bodies decreased with increasing bottom ash content but the extrusion forming process was possible for the green body containing BA up to 40wt% whose plastic index and plastic limit were around 10 and 22 respectively. The ALA containing $30{\sim}40wt%$ BA sintered at $1100{\sim}1200^{\circ}C$ showed a volume specific density of $1.3{\sim}1.5$ and water absorption of $13{\sim}15%$ and could be appled for high-rise building and super-long bridge.

Strength and Modulus Relationship of Concrete for Rigid Pavement (포장용 콘크리트의 강도 및 탄성계수 상관관계식)

  • Yang, Sung-Chul;Park, Jong-Won
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.205-213
    • /
    • 2007
  • Strength relationships are presented through experimental data from the concrete strength tests in this study. Various strength tests such as the compressive, flexural, and splitting tensile strength and the modulus of elasticity are included. An experimental work was performed to determine the various strength characteristics for various mix designs. Three different coarse aggregates such as granite, limestone, sandstone were used and included were fine aggregates such as natural sand, washed sand and crushed sand. Also included was cement amount as experimental variable. It was confirmed that each strength value with respect to curing time is to follow a typical strength development curve. With this somewhat reliable test results various strength relationships such as flexural strength-compressive strength, splitting tensile strength-compressive strength, modulus of elasticity-compressive strength, splitting tensile strength-flexural strength were analyzed through statistics. Experimental data were well fitted to the 0.5-power relationship of flexural strength and compressive strength which has been commonly accepted. The splitting tensile strength is expected to be best in the linear relationship from the flexural strength data. Finally splitting tensile strength was found to be proportional to the 0.87 power of the cylindrical compressive strength.

  • PDF