• Title/Summary/Keyword: crude lignin

Search Result 115, Processing Time 0.023 seconds

Effect of Variety and Stage of Maturity on Nutritive Value of Whole Crop Rice, Yield, Botanical Fractions, Silage Fermentability and Chemical Composition

  • Islam, M.R.;Ishida, M.;Ando, S.;Nishida, T.;Yoshida, N.;Arakawa, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.2
    • /
    • pp.183-192
    • /
    • 2004
  • The effect of eight varieties of grain and forage type whole crop rice (Oryza sativa L Japonica) each harvested at four stages of maturity were investigated for morphology and yield, proportion of botanical fractions, fermentatability and chemical composition in an $8{\times}4$ factorial experiment. All crops were sown in 1997 at Saitama Prefecture, Japan under identical condition and harvested on 10, 22, 34 and 45 days after flowering in 1998. Total DM yield of forage type varieties was similar to that of the highest yield of grain type varieties. However, while yield of forage type varieties was attributed to higher proportion of straw than head, the reverse was in the case of grain type varieties. Yield in line with the proportion of head increased (p<0.001), but in contrast proportion of straw decreased (p<0.001) with the increase in maturity. Silage fermentability of grain type varieties was better than forage type varieties. Fermentability improved with the increase (p<0.001) in maturity suggesting that the moisture content should be reduced to improve fermentation quality. Forage type varieties contained higher (p<0.001) ash, crude fat (EE), organic cell wall (OCW) and acid detergent fiber (ADF), but contained lower crude protein (CP), organic cell content (OCC), CP in OCC and nitrogen-free cell wall extract (NCWFE) than the grain type varieties. The ash, CP, EE, Oa (60% digestible OCW), Ob (40% digestible OCW), OCW, ADF and acid detergent lignin (ADL) decreased (p<0.001), but OCC and NCWFE increased (p<0.001) with the increase in maturity. It is concluded that stage of maturity not only increases yield and proportion of head, but also improved the fermentation quality and increases quality chemical composition (except CP) of whole crop rice. Forage type varieties may be as good as grain type varieties in terms of yield, but fermentation quality and chemical composition may not be as good as that of grain type varieties.

Synergistic Effect of Urea and Lime Treatment of Wheat Straw on Chemical Composition, In Sacco and In Vitro Digestibility

  • Sirohi, S.K.;Rai, S.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.7
    • /
    • pp.1049-1053
    • /
    • 1999
  • Chopped wheat straw (0.5-1.5 cm) was subjected to different treatment combinations in a $5{\times}4$ factorial arrangement involving the five levels of urea (0, 2, 3, 4 and 5%, w/w) and four levels of lime (0, 2, 4 and 6%, w/w) at 50% moisture and kept for 3 wk reaction period at about $35{^{\circ}C}$ in laboratory. Treated wheat straw samples were analyzed to study the associative effect of urea and lime on chemical composition, in sacco and in vitro digestibilities. Results showed that cell wall constituents (CWC) solubilized significantly (p<0.01) due to urea and lime treatment on one hand and substantially increase the crude protein (CP) on the other in wheat straw. The main effect on synergism of both chemicals was noticed on organic matter (OM), neutral detergent fibre (NDF), hemicellulose (HC), acid detergent lignin (ADL) and silica by solubilising their contents as a result of considerable increase in cell contents in treated wheat straw. The respective decreases were 5.45, 13.0, 37.23, 44.95 and 26.16% in different treatment combinations. The most interesting feature of the treatment was evident by increase in ash content on each level of lime application. CP content increase up to 12.78% due to urea treatment in comparison with untreated wheat straw (2.56%). The effect of solubilization of structural carbohydrates and increased crude protein due to synergistic effect of urea and lime were clearly seen on improved digestibility of OM and DM. The increase in ISOMD, ISDMD, and IVDMD were 21.67, 21.67, 16.24, and 17.5 units. The increase in digestibility were relative to additions of both chemicals and digestibility values increased with increasing levels of urea plus lime concentration in different treatment combination. The maximum improvement was noticed at 4% urea and 4% lime levels at 50% moisture for 3 wk reaction period in treated wheat straw.

Chemical Composition, Phenolic Concentration and In Vitro Gas Production Characteristics of Selected Acacia Fruits and Leaves

  • Abdulrazak, S.A.;Orden, E.A.;Ichinohe, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.935-940
    • /
    • 2000
  • The objective of this study was to evaluate the nutritive value of selected fruits (pods and seeds) and leaves of acacia tree species namely; Acacia nubica (nubica), Acacia tortilis (tortilis) and Acacia brevispica (brevispica), Acacia reficiens (reficiens) and Acacia senegal (senegal). A wide variability in chemical composition, polyphenolics and gas production was recorded. The crude protein (CP) ranged from 131 to 238 g/kg DM. Neutral detergent fiber (NDF), acid detergent fiber (ADF) and lignin (ADL) were higher in senegal and significantly different (p<0.05) from other species. The nitrogen bound to fiber tended to be higher in leaves than the fruits, ranging from 2.6 to 11.3 g/kg NDF and 1.6 to 3.2 g/kg ADF. The leaves of reficiens and senegal had higher concentrations of total extractable phenolics (TEPH), total extractable tannins (TET) and total condensed tannins (TCT), but lower in NDF, ADF and ADL than the fruits of nubica, tortilis and brevispica. Mineral concentrations varied among species; all were relatively poor in phosphorus, moderate in calcium and magnesium, and rich in microelements. A significant (p<0.05) variation in gas production after 12, 24, 48, 72 and 96 h was recorded between species. Nubica had the highest (p<0.05) rate of gas production (0.0925) while the highest potential gas production was recorded in tortilis. A strong negative correlation between TEPH and TET with gas production after 24, 48, 72 and 96 was established (r=-0.72 to -0.82). Crude protein and TCT correlated negatively but also weakly with gas production characteristics. Organic matter digestibility calculated from gas production after 48 h (OMD48) ranged between 465 g/kg DM in reficiens and 611 g/kg DM in tortilis. The results of this study indicate that acacia species have the potential to be used as feed supplements.

Variability in Ash, Crude Protein, Detergent Fiber and Mineral Content of Some Minor Plant Species Collected From Pastures Grazed by Goats

  • Serra, A.B.;Serra, S.D.;Orden, E.A.;Cruz, L.C.;Nakamura, K.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.1
    • /
    • pp.28-34
    • /
    • 1997
  • This study was conducted to determine the protein content, cell wall fractions, and mineral concentrations of some minor plant species collected for one year in pastures grazed by goats in the Philippines. An assessment of nutrient variability and a comparison of forage protein and mineral concentrations to the critical value of protein and minerals based on animal needs were also studied. The plant species were the following: grasses(Axonopus compressus, Eleusine indica, Rottboellia exaltata); legumes (Aeschynomene indica, Calopogonium muconoides, Desmodium tortousum); and herbs (Corchorus olitorius, Ipomea aquatica, Sida acuta, Synedrella nodiflora). The two seasons (dry and wet) were subdivided into Dry-1 (December to February, 132 mm total rainfall), Dry-2 (March to May, 25 mm total rainfall), Wet-1 (June to August, 1,138 mm total rainfall), and Wet-2 (September to November, 1,118 mm total rainfall). Results showed that significant differences were obtained on various nutrient fractions including those mineral concentrations across species. Across season, acid detergent lignin (ADL) had higher (p < 0.05) value at Dry-1. Legumes and herbs were higher in crude protein (CP) especially Sida acuta. Grasses showed the highest neutral detergent fiber (NDF) and acid detergent fiber (ADF) with the addition of Sida nodiflora (herb) for it contained high NDF. Aeschynomene indica contained the highest amount of ADL and the herbs (Ipomea aquatica and Sida acuta) had exceptionally high concentration of minerals. Coefficient variation of the various nutrient values ranged from 27.3 to 136.7%. Some forage minerals appeared to be deficient (sodium, phosphorus and copper) or excess (molybdenum) for the whole or part of the year. This study shows that some minor plant species could extend the range of concentration of some nutrients (i.e., CP and minerals) beyond that normally found in conventional pasture species.

Protein Production from Cellulosic Wastes by Mixed Culture of A. phoenices and C. utilis (Aspergillus phoenicis 및 candida utilis의 혼합배양에 의한 섬유소로부터의 단백질 생산)

  • 이영녹;박경량;이주실;배광성;백대홍
    • Korean Journal of Microbiology
    • /
    • v.19 no.1
    • /
    • pp.14-22
    • /
    • 1981
  • Protein content of cellulosic wastes, such as spent grain, hop bark, spent rye, rice straw, rice hull, saw dust and used newspaper, was increased by a mixed culture of C. utilis wastes having 66-75% moisture. Among the fungal strains tested. A.phoenicis KU175 was the most powerful to increase the protein content of A. phoenicis during the mixed culture with C. utilis in the CMC medium reached at the peak for one day culture after inoculation of the both strains at the same time, while it reached at peark from the beginning of the mixed culture, when A. phoenicis was inocultated for 12-24hours prior to the inoculation of C.utilis. To increase the protein content of the cellulosic wastes by the mixed culture of C.utilis and A.phoenicis, the inoculation of both strains at the same time was more effective than the preinoculation of A. phoenicis for 6-24 hours. Content of crude cellulose in the used newspaper, saw dust and spent grain was high relatively, and the lignin content of spent grain, spent rye, and rice strew was reduced more than half by the treatment of 2% NaOH. However, effect of alkali treatment of increase the protein content of the cellulosic wastes was not prominent in the case of mixed culture. Protein content of the cellulosic wastes was increased prominently by the mixed culture of C.utilis and A.phoenicis in semi-solid substrate, compared with the single culture of C. utilis, although the latter increased the protein content of cellulosic wastes considerably. The effect of mixed culture of C. utilis and A. phoenicis increased 4-fold the protein content of spent grain, and more than doubled crude protein in hop bark and rice straw.

  • PDF

Assessment of the Nutritive Value of Whole Corn Stover and Its Morphological Fractions

  • Li, H.Y.;Xu, L.;Liu, W.J.;Fang, M.Q.;Wang, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.194-200
    • /
    • 2014
  • This study investigated the chemical composition and ruminal degradability of corn stover in three maize-planting regions in Qiqihaer, Heilongjiang Province, China. The whole stover was separated into seven morphological fractions, i.e., leaf blade, leaf sheath, stem rind, stem pith, stem node, ear husk, and corn tassel. The assessment of nutritive value of corn stover and its fractions was performed based on laboratory assays of the morphological proportions, chemical composition, and in situ degradability of dry matter (DM), neutral detergent fiber (NDF), and acid detergent fiber (ADF). The chemical composition of corn stover was significantly different from plant top to bottom (p<0.05). Among the whole corn stover and seven morphological fractions, leaf blade had the highest crude protein (CP) content and the lowest NDF and ADF contents (p<0.05), whereas stem rind had the lowest CP content and the highest ADF and acid detergent lignin (ADL) contents (p<0.05). Ear husk had significantly higher NDF content and relatively lower ADL content than other corn stover fractions. Overall, the effective degradability of DM, NDF, and ADF in rumen was the highest in leaf blade and stem pith, followed by ear husk. The results indicate that leaf blade, ear husk, and stem pith potentially have higher nutritive values than the other fractions of corn stover. This study provides reference data for high-efficiency use of corn stover in feeding ruminants.

Effect of Maturity at Harvest on the Changes in Nutritive Value of Round Baled Rye Silage (수확시 숙기가 호밀 라운드베일 사일리지의 사료가치 변화에 미치는 영향)

  • Kim, J.G.;Seo, S.;Chung, E.S.;Kang, W.S.;Ham, J.S.;Kim, D.A.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.4
    • /
    • pp.309-316
    • /
    • 2000
  • The objective of this experiment was to evaluate chemical composition, dry matter(DM) digestibility, DM intake, relative feed value(RFV) and hay grade of imported roughage which was collected by wholesale dealer at Chungnam province in 1999. Experimental roughages includes 8 kinds of imported hays(com stover bale, tall fescue straw, green cell, bermudagrass straw, reed camarygrass straw, alfalfa bale, sugarcane bale and oat hay) and mixture hay(contro1) which was harvested at Chungnam National University experimental field. Compared with mixture hay(contro1) except for alfalfa bale, crude protein of most imported roughage was low, but NDF, ADF, cellulose and lignin compound were high. Futhermore, DM digestibility, DM intake, RFV and hay grade of imported roughage except for alfalfa bale was significantly lower than those of mixture hay(control)(P<0.05). Therefore, it is necessary to evaluate the economic value in the aspect of quality for the imported roughages. (Key words : Imported roughage, RFV, Hay grade, Nutritive value)

  • PDF

Effect of Nitrogen Fertilization and Stage of Maturity of Mottgrass (Pennisetum purpureum) on its Chemical Composition, Dry Matter Intake, Ruminal Characteristics and Digestibility in Buffalo Bulls

  • Sarwar, M.;Mahr-un-Nisa, Mahr-un-Nisa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.7
    • /
    • pp.1035-1039
    • /
    • 1999
  • Four ruminally cannulated buffalo bulls were fed mottgrass diets using a $4{\times}4$ Latin square design. Treatments were arranged factorially and consisted of mottgrass fertilized with 0 for Kg nitrogen (N) per acre and harvested at 40 and 60 days of age. Nitrogen fertilization improved the concentrations of neutral detergent fiber (NDF), and acid detergent fiber (ADF) in early-cut mottgrass (ECM) but, the acid detergent lignin (ADL) contents were higher in the late-cut mottgrass (LCM). The crude protein (CP) contents of the mottgrass decreased with advancing maturity, but N fertilization increased CP at both maturities. The intake of dry matter (DM), organic matter (OM), CP, NDF and ADF were higher by buffalo bulls fed ECM than those fed LCM. The ruminal pH increased in first 6 hours post feeding in animals fed N fertilized mottgrass and may be due to higher concentration of ruminal ammonia. The digestibilities of DM, OM, CP, NDF and ADF were higher by buffalo bulls fed ECM than those fed LCM. However, the application of N fertilizer did not affect the digestibilities of these nutrients.

The Effects of Freezing and Supplementation of Molasses and Inoculants on Chemical and Nutritional Composition of Sunflower Silage

  • Konca, Y.;Buyukkilic Beyzi, S.;Ayasan, T.;Kaliber, M.;Bozkurt Kiraz, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.965-970
    • /
    • 2016
  • This study was conducted to determine the effects of freezing and supplementation of molasses (M), lactic acid bacteria (LAB) and LAB+enzyme mixture on chemical and nutritional composition of sunflower silage (SF). Sunflower crops were harvested (at about $29.2%{\pm}1.2%$ dry matter) and half of fresh sunflower was ensiled alone and half was frozen (F) at $-20^{\circ}C$ for 7 days. Silage additives were admixed into frozen SF material. All samples were ensiled in glass jars with six replicates for 90 days. The treatments were as follows: i) positive control (non-frozen and no additives, NF), ii) negative control (frozen, no additives, F), iii) F+5% molasses (FM), iv) F+LAB (1.5 g/tons, Lactobacillus plantarum and Enterococcus faecium, FLAB); v) F+LAB+enzyme (2 g/tons Lactobacillus plantarum and Enterococcus faecium and cellulase and amylase enzymes, FLEN). Freezing silage increased dry matter, crude ash, neutral detergent fiber, and acid detergent lignin. The organic matter, total digestible nutrient, non-fiber carbohydrate, metabolizable energy and in vitro dry matter digestibility were negatively influenced by freezing treatments (p<0.05). In conclusion, freezing sunflower plants prior to ensiling may negatively affect silage quality, while molasses supplementation improved some quality traits of frozen silage. Lactic acid bacteria and LAB+enzyme inoculations did not effectively compensate the negative impacts of freezing on sunflower silage.

Isolation, Regeneration and PEG-Induced Fusion of Protoplasts of Pleurotus pul-monarius and Pleurotus florida

  • Eyini, M.;Rajkumar, K.;Balaji, P.
    • Mycobiology
    • /
    • v.34 no.2
    • /
    • pp.73-78
    • /
    • 2006
  • Inter-specific hybridization between Pleurotus pulmonarius and P. florida was attempted through PEG-induced protoplast fusion to select a fusant. The protocol for protoplast release, regeneration and fusion in these two Pleurotus species was standardized using the variables controlling the process. The mixture of mycolytic enzymes, i.e. commercial cellulase, crude chitinase and pectinase, KCl (0.6 M) as osmotic stabilizer, pH 6 of the phosphate buffer and an incubation time of 3 hours resulted in the maximum release of protoplasts from 3-day-old mycelia of P. florida ($5.3{\sim}5.75{\times}10^{7}$ protoplasts/g) and P. pulmonarius ($5.6{\sim}6{\times}10^{7}$ protoplasts/g). The isolated protoplasts of P. florida regenerated mycelium with 3.3% regeneration efficiency while P. pulmonarius showed 4.1% efficiency of regeneration. Polyethyleneglycol (PEG)-induced fusion of protoplasts of these two species resulted in 0.28% fusion frequency. The fusant produced fruiting bodies on paddy straw but required a lower temperature of crop running ($24{\pm}2^{\circ}C$) than its parents which could fruit at $28{\pm}2^{\circ}C$. The stable fusant strain was selected by testing for the selected biochemical markers i.e. Carbendazim tolerance and utilization of the lignin degradation product, vanillin.