Browse > Article
http://dx.doi.org/10.5713/ajas.2013.13446

Assessment of the Nutritive Value of Whole Corn Stover and Its Morphological Fractions  

Li, H.Y. (Northeast Agricultural University)
Xu, L. (Northeast Agricultural University)
Liu, W.J. (Northeast Agricultural University)
Fang, M.Q. (Northeast Agricultural University)
Wang, N. (Northeast Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.27, no.2, 2014 , pp. 194-200 More about this Journal
Abstract
This study investigated the chemical composition and ruminal degradability of corn stover in three maize-planting regions in Qiqihaer, Heilongjiang Province, China. The whole stover was separated into seven morphological fractions, i.e., leaf blade, leaf sheath, stem rind, stem pith, stem node, ear husk, and corn tassel. The assessment of nutritive value of corn stover and its fractions was performed based on laboratory assays of the morphological proportions, chemical composition, and in situ degradability of dry matter (DM), neutral detergent fiber (NDF), and acid detergent fiber (ADF). The chemical composition of corn stover was significantly different from plant top to bottom (p<0.05). Among the whole corn stover and seven morphological fractions, leaf blade had the highest crude protein (CP) content and the lowest NDF and ADF contents (p<0.05), whereas stem rind had the lowest CP content and the highest ADF and acid detergent lignin (ADL) contents (p<0.05). Ear husk had significantly higher NDF content and relatively lower ADL content than other corn stover fractions. Overall, the effective degradability of DM, NDF, and ADF in rumen was the highest in leaf blade and stem pith, followed by ear husk. The results indicate that leaf blade, ear husk, and stem pith potentially have higher nutritive values than the other fractions of corn stover. This study provides reference data for high-efficiency use of corn stover in feeding ruminants.
Keywords
Whole Corn Stover; Morphological Fraction; Chemical Composition; In situ Degradability; Qiqihaer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahmed, A. and J. Y. Zhu. 2006. Cornstalk as a source of fiber and energy. In: New technologies in non-wood fiber pulping and papermaking (Ed. H. Y. Zhan, F. G. Chen, and S. Y. Fu). South China University of Technology Press, Guangzhou, pp. 1-4.
2 AOAC. 1990. Official method of analysis. 15th Edn., Association of Official Analytical Chemists, Washington, DC., USA., 66-88.
3 Crandell, E. B. and J. W. Worley. 1988. Optimization of a device for separating sweet sorghum pith. American Society of Agricultural Engineers (88-6550):12.
4 Crawford, T. W., V. V. Rending, and F. E. Bordabent. 1982. Source fluxes and sinks of nitrogen during early reproductive growth of maize. Plant Physiol. 70:1654-1660.   DOI   ScienceOn
5 Goering, H. K. and P. J. Van Soest. 1970. Forage fibre analysis (apparatus, reagents, procedures and some applications). Agricultural Handbook 379. Agricultural Research Services, USDA, Washington, DC.
6 Grundas, S. and G. Skubisz. 2008. Physical properties of cereal grainand rape stem. Res. Agr. Eng. 54:80-90.
7 Han, Y. W. 2007. Assessment on feed criteria of dairy cattle in China. Chin. J. Feed Rev. 9:28-29.
8 Hay, R. E., E. B. Earley, and E. E. Deutkr. 1953. Concentration and translocation of nitrogen compounds in the corn plant (Zea mays) during grain development. Plant Physiol. 28:606-621.   DOI   ScienceOn
9 Hess, J. A., A. E. Olson, and R. S. Jacobs. 2002. Wisconsin corn stover - Part 1: Chemical composition. Proceedings of TAPPI 2002 Fall Technical Conference. TAPPI Press.
10 Hunt, C. W., W. Kezar, and R. Vinande. 1992. Yield, chemical composition, and ruminal fermentability of corn whole plant, ear, and stover as affected by hybrid. Prod. Agric. 5:286-290.   DOI
11 Lee, S., T. F. Shupe, and C. Y. Hse. 2006. Mechanical and physical properties of agro-based fiberboard. Holz als Roh- und Werkstoff. 64:74-79.   DOI   ScienceOn
12 Liu, L. and D. Wang. 2011. Experimental study on separating mechanism of corn straw. J. Northeast Agricultural University. 42:43-47. (in Chinese)
13 Jung, H. G. and M. S. Allen. 1995. Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. J. Anim. Sci. 73:2774-2790.
14 Karsli, M. A., and J. R. Russell. 2002. Prediction of the voluntary intake and digestibility of forage-based diets from chemical composition and ruminal degradation characteristics. Turk. Vet. Anim. Sci. 26:249-255.
15 Kalmbacher, R. S. 1983. Distribution of dry matter and chemical constituents in plant parts of four florida native grasses. J. Range Manag. 36:298-301.   DOI
16 Madibela, O. R., W. S. Boitumelo, C. Manthe, and I. Raditedu. 2002. Chemical composition and in vitro dry matter digestibility of local landraces of sweet sorghum in Botswana. Livest. Res. Rural Develop. 14(2). www.cipav.org.co/lrrd/ lrrd14/4/madi144.htm.
17 Maheri-Sis, N., B. Abdollahi-Ziveh, R. Salamatdoustnobar, A. Ahmadzadeh, A. Aghajanzadeh-Golshani, and M. Mohebbizadeh. 2011. Determining nutritive value of soybean straw for ruminants using nylon bags technique. Pakistan J. Nutr. 10:838-841.
18 Orskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499-503.   DOI
19 Schulthess, U., A. Tedla, M. A. Mohammed-Saleem, and A. N. Said. 1995. Effects of variety, altitude, and undersowing with legumes on the nutritive value of wheat straw. Exp. Agric. 31: 169-176.   DOI
20 Sannasgala, K. and M. C. N. Jayasuriya. 1987. The influence of plant fractions on the digestibility of rice straw. Biol. Waste. 20:153-156.   DOI   ScienceOn
21 Shand, W. J., E. R. Ørskov, and L. A. F. Morrice. 1988. Rumen degradation of straw 5. Botanical fractions and degradability of different varieties of oat and wheat straws. Anim. Prod. 47: 387-392.   DOI
22 Tan, Z. L., H. P. Chen, L. H. He, R. J. Fang, and T. X. Xing. 1995. Variation in the nutritional characteristics of wheat straw. Anim. Feed Sci. Technol. 53:337-344.   DOI   ScienceOn
23 Tang, S. X., Z. L. Tang, C. S. Zhou, H. L. Jiang, Y. M. Jiang, and L. X. Sheng. 2006. A comparison of in vitro fermentation characteristics of different botanical fractions of mature maize stover. J. Anim. Feed Sci. 15:505-515.
24 Tolera, A. and F. Sundstol. 1999. Morphological fractions of maize stover harvested at different stages of grain maturity and nutritive value of different fractions of the stover. Anim. Feed Sci. Technol. 81:1-16.   DOI   ScienceOn
25 Tovar-Gomez, M. R., J. C. Emile, B. Michalet-Doreau, and Y. Barriere. 1997. In situ degradation kinetics of maize hybrid stalks. Anim. Feed Sci. Technol. 68:77-88.   DOI   ScienceOn
26 Vadiveloo, J. 2000. Nutritional properties of the leaf and stem of rice straw. Anim. Feed Sci. Technol. 83:57-65.   DOI   ScienceOn
27 Zhou, X., L. Tan, W. Zhang, C. L. Lv, F. Zheng, R. Zhang, G. B. Du, B. J. Tang, and X. Y. Liu. 2011. Enzymatic hydrolysis lignin derived from corn stover as an intrinsic binder for bio-composites manufacture: Effect of fiber moisture content and pressing temperature on boards' properties. BioResour. 6:253-264.
28 Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary neutral detergent fiber and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.   DOI   ScienceOn
29 Wang, H. F., Y. M. Wu, J. X. Liu, and Q. Qian. 2006. Morphological fractions, chemical compositions and in vitro gas production of rice straw from wild and brittle culm1variety harvested at different growth stages. Anim. Feed Sci. Technol. 129:159-171.   DOI   ScienceOn
30 Zeng, X., Y. Ma, and L. Ma. 2007. Utilization of straw in biomass energy in China. Renew. Sustain. Energy Rev. 11:976-987.   DOI   ScienceOn