• Title/Summary/Keyword: crosslinker

Search Result 106, Processing Time 0.023 seconds

Transport of Some Solutes in Blood Plasma Through Poly(2-Hydroxyethyl Methacrylate) Hydrogel Membrane (혈장내 염의 Poly(2-Hydroxyethyl Methacrylate) 격막 투과현상)

  • Jee Jong Gi;Jhon Mu Shik;Ree Tai Kyue
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.304-310
    • /
    • 1978
  • The relative permeabilities, distribution coefficients and diffusion coefficient of some salts which are important components in blood plasma through a poly(HEMA) membrane were measured. The crosslinker which was used for preparing the membrane was tetraethylene glycol dimethacrylate(TEGDMA), the weight percentage of the latter was about 2.8. We found that the diffusion coefficients ($D_m$) of the solutes decrease exponentially with increasing molecular weight, and also that $D_m$'s decrease linearly (except urea) with cylindrical radius (a). These facts were explained by a sieve pore flow model. The relative permeability and diffusion coefficient of urea at various temperature were larger than those of other solutes such as glycine, ${\beta}$-alanine, D-glucose, saccharose and maleic acid. The result indicates that the poly(HEMA) membrane might be suitable for hemodialysis application.

  • PDF

Transport Characteristics of Alcohol Solutes through Copolymer Hydrogel Membranes Containing Poly(2-Hydroxyethylmethacrylate) (Poly(2-Hydroxyethylmethacrylate)를 포함한 공중합체 수화겔막에 대한 알콜용질의 투과특성)

  • Park, Yu Mi;Kim, Eun Sik;Seong, Yong Gil
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.377-383
    • /
    • 1990
  • Three kinds of hydrogel membranes were prepared by the copolymerization of 2-hydroxyethylmethacrylate (HEMA) with acrylamide, N, N-dimethylamide and methylmethacrylate in the presence of solvent and crosslinker respectively. The equilibrium water content, relative permeability and partition coefficient of the membranes for alcohol solutes were measured. It has been found that the permeation of organic solute occurs through the water-filled regions in the hydrogel membrane, and that the gpermeability coefficient of organic solute depends on the molecular size. But the permeability of organic solute was controlled by the interaction of solute-membrane at the low water content. By the partition data, it has been shown that the partition of solute is only controlled by hydrophobic interaction between solute and membrane. The diffusion coefficient data were interpreted on the basis of water-solute interaction. It has been found that the diffusion of organic solute is determined by the free volume of water in the membrane, and that hardly depends on polarity-polarizability and hydrogen bonding ability between water and solute.

  • PDF

Temperature Dependence on the Binding of the Homologs of Methyl Orange by Crosslinked Poly(4-vinylpyridine). 6. Effect of Crosslinking Agent (가교폴리 (4-비닐피리딘) 과 메틸오렌지동족체와의 결합에 대한 온도의 존성. 6. 가교제의 영향)

  • Lee, Suck-Kee;Park, Nam-Kyu;Kim, Woo-Sik
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.182-189
    • /
    • 1990
  • Various crosslinked poly(4-vinylpyridines) having different degrees of crosslinking were prepared by radical copolymerizations of 4-vinylpyridine with N, N'-2, 6-pyridinebisacrylamide as a crosslinker. The abilities of these crosslinked polymers to bind methyl orange and butyl orange were investigated at various temperatures in a buffer solution of pH 7. The first binding constants were evaluated from the equilibrium binding amounts. The first binding constants against the temperatures showed bell-shaped curves. Also, the first binding constants against the degree of crosslinking showed bell-shaped curves. When the temperature and the degree of crosslinking of maximum binding in the curves of these binding systems were compared with those of previous systems containing crosslinked poly(4-vinylpyridines) prepared by using N, N'-methylenebisacrylamide, N, N'-tetramethy-lenebisacryamide and divinylbenzene as crosslinkers, respectively, they were varied with the crosslinked poly(4-vinyl pyridines) containing different crosslinkers. These results were discussed in terms of the properties of the crosslinkers.

  • PDF

High Proton Conductivity Crosslinked Sulfonated Polyimide Membranes (높은 수소이온전도성을 가진 가교술폰화폴리이미드막)

  • Lee, Chang-Hyun;Park, Chi-Hoon;Park, Ho-Bum;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.61-63
    • /
    • 2003
  • A major research objective related to proton exchange membrane(PEM) for DMFC is to achieve high proton conductivity over 10$^{-2}$ S/cm, high hydrolytic stability and low methanol permeability with low cost base materials. for the purpose, a lot of thermoplastic polymers such as polysulfones, polyethersulfone, polyetherketones, polyimides, polyoxadiazole, polyphosphazene and polybenzimidazol have been investigated. Amongst those polymers, polyimides have been suggested as a potential PEM due to their excellent thermal, chemical stability and good mechanical properties. Generally, polyimides are synthesized by polycondensation with numerious diamines and dianhydriedes. In our study, polyimide was prepared using non-sulfonated diamine, sulfonated diamine directly synthesized by fuming sulfuric acid, and naphthalenic dianhydride to improve the hydrolysis stability under acidic condition. Through monomer sulfonation-subsequent polymerization method, the high proton conducting capability and the desired sulfonation level were effectively controlled at the same time. To reduce severe methanol transport through the membrane, the chemical crosslinking among polymer chains was introduced using various crosslinking agents with different chain lengths. The crosslinked sulfonated polyimide membranes showed high proton conductivity up to 8.09$\times$10$^{-2}$ S/cm and from crosslinking effect methanol transport through the membranes was considerably reduced as compared with unmodified membranes. For increase of chain length of crosslinker, methanol permeability was adversely reduced to 10$^{-8}$ $\textrm{cm}^2$/s due to decrease of IEC and increase of crosslinking desity.

  • PDF

Dispersion Polymerization of Acrylamide in the Media of t-Butyl Alcohol/$H_2O$ Mixtures (t-Butyl Alcohol/$H_2O$ 혼합 용매에서 아크릴아미드의 분산중합)

  • 이기창;이성은;송봉근;이동주
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.629-637
    • /
    • 2000
  • Dispersion polymerization of acrylamide in the media of t-butyl alcoho1/$H_2O$ mixtures at 30~5$0^{\circ}C$ in the presence of hydroxypropyl cellulose and ammonium persulfate as steric stabilizer and initiator, respectively, was carried out. It was studied the effects of concentrations of initiator and steric stabilizer, amount of monomer, polymerization temperature, t-butyl alcohol/$H_2O$ ratio, concentration of crosslinker, purification of monomer and nitrogen purge on the particle size of the resulting acrylamide latices and molecular weight of the latex-poly(acrylamide). In this study, poly(acrylamide) latices of 0.1~0.5 ${\mu}{\textrm}{m}$ with 470000~2080000 in (equation omitted) were prepared and the resulting PAM latices were all dissolved in water in stantly.

  • PDF

Effect Of Silica Concentration and Crosslinking Agent on Adhesion Properties and Thermal Stability Of UV Cured 2-EHA/AA PSAs (자외선 경화형 2-EHA/AA 점착제의 점착 물성 및 열 안정성에 미치는 실리카 함량 및 경화제 효과)

  • Kim, Ho-Gyum
    • Journal of Adhesion and Interface
    • /
    • v.16 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • It was investigated that the effect of surface modification and concentration of fumed silica on the adhesion properties and thermal stability of 2-EHA/AA pressure sensitive adhesive (PSAs) prepared by UV irradiation. The influence of repeating units of crosslinking agent on PSAs were also studied. From SEM analysis, PSAs synthesized with surface modified silica had finer dispersion of silica particles in polymer matrix due to the interfacial interaction. Results of the study showed that increase in tack and peel strength when under 0.3 wt% of silane treated silica were added in the reaction mixture. The addition of PEGDMA for crosslinking agent offers positive effect on adhesion properties in comparison with PSAs using EGDMA for crosslinker, which may be attributed to high mobility of ethylene oxide repeating units in PEGDMA. From the thermal degradation residue of PSAs, it was revealed that thermal stability was improved with silica addition due to the strong interfacial bonding between silane modified silica and polymer matrix, which may act as a thermal barriers into 2-EHA/AA PSAs.

Partially Hydrolyzed Crosslinked Alginate-graft-Polymethacrylamide as a Novel Biopolymer-Based Superabsorbent Hydrogel Having pH - Responsive Properties

  • Pourjavadi A.;Amini-Fazi M. S.;Hosseinzadeh H.
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.45-53
    • /
    • 2005
  • In this study, a series of highly swelling hydrogels based on sodium alginate (NaAlg) and polymethacryl­amide (PMAM) was prepared through free radical polymerization. The graft copolymerization reaction was performed in a homogeneous medium and in the presence of ammonium persulfate (APS) as an initiator and N,N'-methylenebis­acrylamide (MBA) as a crosslinker. The crosslinked graft copolymer, alginate-graft-polymethacrylamide (Alg-g­PMAM), was then partially hydrolyzed by NaOH solution to yield a hydrogel, hydrolyzed alginate-graft-poly­methacrylamide (H-Alg-g-PMAM). During alkaline hydrolysis, the carboxamide groups of Alg-g-PMAM were converted into hydrophilic carboxylate anions. Either the Alg-g-PMAM or the H-Alg-g-PMAM was characterized by FTIR spectroscopy. The effects of the grafting variables (i.e., concentration of MBA, MAM, and APS) and the alkaline hydrolysis conditions (i.e., NaOH concentration, hydrolysis time, and temperature) were optimized systematically to achieve a hydrogel having the maximum swelling capacity. Measurements of the absorbency in various aqueous salt solutions indicated that the swelling capacity decreased upon increasing the ionic strength of the swelling medium. This behavior could be attributed to a charge screening effect for monovalent cations, as well as ionic cross-linking for multivalent cations. Because of the high swelling capacity in salt solutions, however, the hydrogels might be considered as anti-salt superabsorbents. The swelling behavior of the superabsorbing hydrogels was also measured in solutions having values of pH ranging from 1 to 13. Furthermore, the pH reversibility and on/off switching behavior, measured at pH 2.0 and 8.0, suggested that the synthesized hydrogels were excellent candidates for the controlled delivery of bioactive agents. Finally, we performed preliminary investigations of the swelling kinetics of the synthesized hydrogels at various particle sizes.

Resistive Humidity Sensor from Copolymers Containing Quaternary Ammonium Salt (I): Three Component Copolymers (4차 암모늄염을 포함하는 공중합체를 이용한 저항형 습도센서(I) : 3원 공중합체)

  • Lee, Dong-Geun;Lim, Tae-Ho;Jeon, Young-Min;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.194-200
    • /
    • 2007
  • The resistive-type polymeric humidity sensors were prepared from the copolymers of [2- [(methacryloyloxy)ethyl] dimethyl] propylammonium bromide(MEPAB), [2- [(methacryloyloxy)ethyl]-2-hydroxyethyl]dimethylmonium bromide (MEHDAB), n-butyl methylacrylate(MBA), 2-hydroxyethyl methylacrylate(HEMA) and styrene. Four kinds of copolymers, ie, MEPAB/styrene/MEHDAB MEHDAB/BMA/HEMA, MEPAB/BMA/MEHDAB, and MEPAB/styrene/HEMA crosslinked with blocked-isocyanate on the Ag/Pd electrode/alumina substrate showed good durability at high humidities. The various electrical properties such as frequency dependency, temperature dependency, hysteresis, response time and water durability were examined. In the case of copolymer MEPAB/BMA/MEHDAB= 3/6/1, the resistance was varied from $2.9 M{\Omega}$ to $1.84k{\Omega}$ at $25^{\circ}C$ in the range of $30{\sim}90%RH$ and this copolymers showed a good linearity and low hysteresis.

Effect of Chemical Structure of Acrylate Monomer on the Transparent Acrylic Pressure Sensitive Adhesives for Optical Applications (광학용 아크릴 점착제내 단량체 화학구조에 따른 점착특성)

  • Baek, Seung-Suk;Jang, Se-Jung;Lee, Sang Won;Hwang, Seok-Ho
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.682-686
    • /
    • 2014
  • To prepare transparent acrylic pressure sensitive adhesives (PSAs), terpolymer syrups were photopolymerized from 2- ethylhexyl acrylate and 2-hydroxyethyl acrylate with third monomer having different chemical structure. After polymerization, 1,6-hexanediol diacrylate as a crosslinker and a photoinitiator were added and then UV-irradiated to prepare the PSAs. The adhesion performances and optical characteristics of the PSAs were investigated. Their adhesion performance was dependent on the composition of monomers in the polymer chain but optical properties were maintained at a suitable level. The PSAs prepared by bulky and heteroatom-containing monomers such as IBOA, THFA, and ACMO showed better adhesion performance than others.

Crosslinking of Poly(2,6-dimethyl-1,4-phenylene oxide) Anion Exchange Membranes (폴리페닐렌 옥사이드 음이온 교환막의 가교결합)

  • Lee, Seung-Gwan;Kim, Mi-Yang;So, Won-Wook;Kang, Kyung-Seok;Kim, Kwang-Je
    • Membrane Journal
    • /
    • v.28 no.5
    • /
    • pp.326-331
    • /
    • 2018
  • Crosslinking of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) anion exchange membranes, which can be used for capacitive deionization (CDI), was investigated. PPO Anion exchange polymer was prepared through bromination and amination reaction steps and crosslinked with bisphenol A diglycidylether (BADGE), m-phenylenediamine (m-PDA), and hexamethylenediamine (HMDA). The gelation time by crosslinking was short in the order of HMDA > m-PDA > BADGE. The anion exchange membranes crosslinked at room temperature over a certain amount of crosslinking agent did not dissolve in an aprotic solvent such as 1-methylpyrrolidone (NMP) and the chemical durability of their membranes to organic solvent increased. The ion exchange capacity and water uptake of anion exchange membranes crosslinked with different crosslinker (BADGE) contents were measured and compared. The CDI performance of the crosslinked PPO anion exchange membrane immersed in the HMDA solution was almost the same as that of the non - crosslinked membrane except for the initial stage of the adsorption step.