DOI QR코드

DOI QR Code

Crosslinking of Poly(2,6-dimethyl-1,4-phenylene oxide) Anion Exchange Membranes

폴리페닐렌 옥사이드 음이온 교환막의 가교결합

  • Received : 2018.09.14
  • Accepted : 2018.10.25
  • Published : 2018.10.31

Abstract

Crosslinking of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) anion exchange membranes, which can be used for capacitive deionization (CDI), was investigated. PPO Anion exchange polymer was prepared through bromination and amination reaction steps and crosslinked with bisphenol A diglycidylether (BADGE), m-phenylenediamine (m-PDA), and hexamethylenediamine (HMDA). The gelation time by crosslinking was short in the order of HMDA > m-PDA > BADGE. The anion exchange membranes crosslinked at room temperature over a certain amount of crosslinking agent did not dissolve in an aprotic solvent such as 1-methylpyrrolidone (NMP) and the chemical durability of their membranes to organic solvent increased. The ion exchange capacity and water uptake of anion exchange membranes crosslinked with different crosslinker (BADGE) contents were measured and compared. The CDI performance of the crosslinked PPO anion exchange membrane immersed in the HMDA solution was almost the same as that of the non - crosslinked membrane except for the initial stage of the adsorption step.

축전식 탈염(capacitive deionization)에 이용할 수 있는 폴리페닐렌 옥사이드(PPO) 음이온 교환막의 가교결합에 대해 조사하였다. 브롬화와 아민화 반응단계를 거쳐 PPO 음이온 교환 고분자를 제조하고 비스페놀 A 디글리시딜에테르(BADGE), m-페닐렌디아민(m-PDA), 헥사메틸렌디아민(HMDA) 등으로 가교하였다. 가교에 따른 겔화되는 시간은 HMDA > m-PDA > BADGE 순으로 짧았으며, 일정한 함량 이상으로 실온에서 가교하면 1-메틸피롤리돈(NMP)과 같은 비양성자성 용매(aprotic solvent)에 녹지 않아 내화학성이 증대되었다. 가교제(BADGE) 함량에 따른 음이온 교환막의 이온 교환 용량과 함수율을 측정하고 비교하였다. HMDA 용액에 침적하여 표면 가교한 PPO 음이온 교환막을 축전식 탈염에 적용한 결과 그 탈염 성능은 가교하지 않은 막과 비교하여 흡착단계의 초기 부분을 제외하고 거의 차이가 없었다.

Keywords

References

  1. S. Porada, R. Zhao, A. Wal, V. Presser, and P. M. Biesheuvel, "Review on the science and technology of water desalination by capacitive deionization", Prog. Mater. Sci., 58, 1388 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
  2. L. Alvarado and A. Chen, "Electrodeionization: Principles, strategies and applications", Electrochim. Acta, 132, 583 (2014). https://doi.org/10.1016/j.electacta.2014.03.165
  3. B. Bae, E. Kim, S. Lee, and H. Lee, "Research trends of anion exchange membranes within alkaline fuel cells", New & Renewable Energy, 11, 52 (2015). https://doi.org/10.7849/ksnre.2015.12.11.4.52
  4. C. Wang, Z. He, X. Xie. X. Mai, Y. Li, T. Li, M. Zhao, C. Yan, H. Liu, E. V. Wujcik, and Z. Guo, "Controllable cross-linking anion exchange membranes with excellent mechanical and thermal properties", Macromol. Mater. Eng., 303, 1700462 (2018). https://doi.org/10.1002/mame.201700462
  5. J. S. Kim, C. S. Kim, H. S. Shin, and J. W. Rhim, "Application of synthesized anion and cation exchange polymers to membrane capacitive deionization (MCDI)', Macromol. Res., 23, 360 (2015). https://doi.org/10.1007/s13233-015-3049-6
  6. J. Y. Lee, S. J. Seo, S. H. Yun, and S. H. Moon, "Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI)", Water Res., 45, 5375 (2011). https://doi.org/10.1016/j.watres.2011.06.028
  7. M. S. Cha, J. Y. Lee, T. H. Kim, H. Y. Jeong, H. Y. Shin, S. G. Oh, and Y. T. Hong, "Preparation and characterization of crosslinked anion exchange membrane (AEM) materials with poly(phenylene ether)-based short hydrophilic block for use in electrochemical applications", J. Membr. Sci., 530, 73 (2017). https://doi.org/10.1016/j.memsci.2017.02.015
  8. J. S. Lee, M. C. Yoo, B. J. Chang, J. H. Kim, H. Kang, and S. B. Lee, "Preparation of anion exchange membranes for electrodialysis by impregnation porous polyethylene films with crosslinked poly(vinylbenzyl ammonium chloride)s", Membr. J., 18, 138 (2008).
  9. Y. Tanaka, "Membrane science and technology, 12: ion exchange membranes: Fundamentals and applications", pp 7-10, Elsevier, Amsterdam, The Netherlands (2007).
  10. L. Zhu, T. J. Zimudzi, Y. Wang, X. Yu, J. Pan, J. Han, D. I. Kushner, L. Zhuang, and M. A. Hickner, "Mechanically robust anion exchange membranes via long hydrophilic cross-linkers", Macromolecules, 50, 2329 (2017). https://doi.org/10.1021/acs.macromol.6b01381
  11. J. Zhou, M. Unlu, I. Anestis-Richard, and P. A. Kohl, "Crosslinked, expoxy-based anion conductive membranes for alkaline membrane fuel cells", J. Membr. Sci., 350, 286 (2010). https://doi.org/10.1016/j.memsci.2010.01.003
  12. J. Hou, Y. Liu, Q. Ge, Z. Yang, L. Wu, and T. Xu, "Recyclable cross-linked anion exchange membrane for alkaline fuel cell application", J. Power Sources, 375, 404 (2018). https://doi.org/10.1016/j.jpowsour.2017.06.073
  13. L. Zhu, T. J. Zimudzi, N. Li, J. Pan, B. Lin, and M. A. Hickner, "Crosslinking of comb-shaped polymer anion exchange membranes via thiol-ene click chemistry", Polym. Chem., 7, 2464 (2016). https://doi.org/10.1039/C5PY01911G
  14. M. Y. Kim, K. J. Kim, and H. Kang, "Preparation of anion exchange membranes of cross-linked poly((vinylbenzyl)trimethylammonium chloride-2-hydroxyethyl methacrylate)/poly(vinyl alcohol)", Appl. Chem. Eng., 21, 621 (2010).
  15. H. W. Yoo, J. H. Kang, N. S. Park, T. I. Kim, M. I. Kim, and Y. S. Lee, "Preparation and characteristics of fluorinated carbon nanotube applied capacitive desalination electrode with low energy consumption", Appl. Chem. Eng., 27, 386 (2016). https://doi.org/10.14478/ace.2016.1040
  16. Z. W. Wicks Jr, F. N. Jones, S. P. Pappas, and D. A. Wicks, "Organic Coatings Science and Technology", 3rd ed., pp278-285, John Wiley & Sons, Hoboken, New Jersey (2007).