• Title/Summary/Keyword: cross-validation function

Search Result 130, Processing Time 0.026 seconds

GLOBAL MINIMA OF LEAST SQUARES CROSS VALIDATION FOR A SYMMETRIC POLYNOMIAL KEREL WITH FINITE SUPPORT

  • Jung, Kang-Mo;Kim, Byung-Chun
    • Journal of applied mathematics & informatics
    • /
    • v.3 no.2
    • /
    • pp.183-192
    • /
    • 1996
  • The least squares cross validated bandwidth is the mini-mizer of the corss validation function for choosing the smooth parame-ter of a kernel density estimator. It is a completely automatic method but it requires inordinate amounts of computational time. We present a convenient formula for calculation of the cross validation function when the kernel function is a symmetric polynomial with finite sup-port. Also we suggest an algorithm for finding global minima of the crass validation function.

Bandwidth selections based on cross-validation for estimation of a discontinuity point in density (교차타당성을 이용한 확률밀도함수의 불연속점 추정의 띠폭 선택)

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.765-775
    • /
    • 2012
  • The cross-validation is a popular method to select bandwidth in all types of kernel estimation. The maximum likelihood cross-validation, the least squares cross-validation and biased cross-validation have been proposed for bandwidth selection in kernel density estimation. In the case that the probability density function has a discontinuity point, Huh (2012) proposed a method of bandwidth selection using the maximum likelihood cross-validation. In this paper, two forms of cross-validation with the one-sided kernel function are proposed for bandwidth selection to estimate the location and jump size of the discontinuity point of density. These methods are motivated by the least squares cross-validation and the biased cross-validation. By simulated examples, the finite sample performances of two proposed methods with the one of Huh (2012) are compared.

Multiclass LS-SVM ensemble for large data

  • Hwang, Hyungtae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1557-1563
    • /
    • 2015
  • Multiclass classification is typically performed using the voting scheme method based on combining binary classifications. In this paper we propose multiclass classification method for large data, which can be regarded as the revised one-vs-all method. The multiclass classification is performed by using the hat matrix of least squares support vector machine (LS-SVM) ensemble, which is obtained by aggregating individual LS-SVM trained on each subset of whole large data. The cross validation function is defined to select the optimal values of hyperparameters which affect the performance of multiclass LS-SVM proposed. We obtain the generalized cross validation function to reduce computational burden of cross validation function. Experimental results are then presented which indicate the performance of the proposed method.

SVC with Modified Hinge Loss Function

  • Lee, Sang-Bock
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.905-912
    • /
    • 2006
  • Support vector classification(SVC) provides more complete description of the linear and nonlinear relationships between input vectors and classifiers. In this paper we propose to solve the optimization problem of SVC with a modified hinge loss function, which enables to use an iterative reweighted least squares(IRWLS) procedure. We also introduce the approximate cross validation function to select the hyperparameters which affect the performance of SVC. Experimental results are then presented which illustrate the performance of the proposed procedure for classification.

  • PDF

Sparse kernel classication using IRWLS procedure

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.4
    • /
    • pp.749-755
    • /
    • 2009
  • Support vector classification (SVC) provides more complete description of the lin-ear and nonlinear relationships between input vectors and classifiers. In this paper. we propose the sparse kernel classifier to solve the optimization problem of classification with a modified hinge loss function and absolute loss function, which provides the efficient computation and the sparsity. We also introduce the generalized cross validation function to select the hyper-parameters which affects the classification performance of the proposed method. Experimental results are then presented which illustrate the performance of the proposed procedure for classification.

  • PDF

e-SVR using IRWLS Procedure

  • Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1087-1094
    • /
    • 2005
  • e-insensitive support vector regression(e-SVR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. In this paper we propose an iterative reweighted least squares(IRWLS) procedure to solve the quadratic problem of e-SVR with a modified loss function. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of e-SVR. Experimental results are then presented which illustrate the performance of the IRWLS procedure for e-SVR.

  • PDF

Mixed-effects LS-SVR for longitudinal dat

  • Cho, Dae-Hyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.363-369
    • /
    • 2010
  • In this paper we propose a mixed-effects least squares support vector regression (LS-SVR) for longitudinal data. We add a random-effect term in the optimization function of LS-SVR to take random effects into LS-SVR for analyzing longitudinal data. We also present the model selection method that employs generalized cross validation function for choosing the hyper-parameters which affect the performance of the mixed-effects LS-SVR. A simulated example is provided to indicate the usefulness of mixed-effect method for analyzing longitudinal data.

LS-SVM for large data sets

  • Park, Hongrak;Hwang, Hyungtae;Kim, Byungju
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.549-557
    • /
    • 2016
  • In this paper we propose multiclassification method for large data sets by ensembling least squares support vector machines (LS-SVM) with principal components instead of raw input vector. We use the revised one-vs-all method for multiclassification, which is one of voting scheme based on combining several binary classifications. The revised one-vs-all method is performed by using the hat matrix of LS-SVM ensemble, which is obtained by ensembling LS-SVMs trained using each random sample from the whole large training data. The leave-one-out cross validation (CV) function is used for the optimal values of hyper-parameters which affect the performance of multiclass LS-SVM ensemble. We present the generalized cross validation function to reduce computational burden of leave-one-out CV functions. Experimental results from real data sets are then obtained to illustrate the performance of the proposed multiclass LS-SVM ensemble.

Cox proportional hazard model with L1 penalty

  • Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.3
    • /
    • pp.613-618
    • /
    • 2011
  • The proposed method is based on a penalized log partial likelihood of Cox proportional hazard model with L1-penalty. We use the iteratively reweighted least squares procedure to solve L1 penalized log partial likelihood function of Cox proportional hazard model. It provide the ecient computation including variable selection and leads to the generalized cross validation function for the model selection. Experimental results are then presented to indicate the performance of the proposed procedure.