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ADAPTIVE ESTIMATION OF EFFICIENT SCORE
FUNCTION FOR CENSORED AND TRUNCATED
REGRESSION MODELS !

Chul-Ki Kim !

ABSTRACT

An adaptive estimator of the efficient score function for censored and
truncated regression models is developed by using B-splines to estimate the
score function and a relatively simple cross validation method to determine
the number of knots.

Keywords : Adaptation; B-splines; Cross validation; Censoring; Truncation.

1. INTRODUCTION
Consider the linear regression model
=8l te (=120, (1.1)

where the €; are 1.i.d. random variables (representing unobservable disturbances)
with a common distribution function F, 5 is a d X 1 vector of unknown param-
eters and the z; are either nonrandom or independent d x 1 random vectors
independent of {¢;}. Suppose that the responses y; in (1.1) are not completely
observable due to left truncation and right censoring by random variables ¢; and
¢; such that —oc <t; < oo and ~oo < ¢; < oc. It will be assumed that (¢;.¢;)
areii.d. and are independent of (z;,¢€;). Let §; = y;Ac; and 6; = Ity <c;y- where
we use A and V to denote minimum and maximum, respectively. In addition to
right censorship of the responses y; by c;, we shall also assume left truncation in
the sense that (g;,4;, ;) can be observed only when y; > t;. The data, there-
fore, consist of n observations (§2,t2,87, 2?) with §¢ > t. ¢« = 1.--- ,n. The

1
special case t; = —oo corresponds to the “censored regression model” which is
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of basic importance in statistical modelling and analysis of failure time data (cf.
Kalbfleisch and Prentice (1980), Lawless (1982)). The special case ¢; = oo cor-
responds to the “truncated regression model” in econometrics (cf. Tobin (1958).
Goldberger (1981), Amemiya (1985), Moon (1989)) and in astronomy (cf. Segal
(1975), Nicoll and Segal (1980)), which assumes the presence of truncation vari-
ables 7; so that (z;,y;) can be observed only when y; < 7; (or equivalently, when
~y; > —7; = t;). Left truncated responses that are also right censored arise in
prospective studies of a disease and other biomedical studies (cf. Andersen et
al.(1993), Keiding, Holst and Green (1989), Gross and Lai (1996)).

Lai and Ying (1991b,1992) studied efficient estimation of 3 from the data
(52,12,062,x7) by developing asymptotic minimax bounds for the semiparametric
estimation problem and constructing rank estimators that attain these bounds.
Assuming that F' has a continuously differentiable density function f so that the
hazard function A = f/(1 — F) is also continuously differentiable, their construc-
tion of these rank estimators consists of (i) dividing the sample into two disjoint
subsets and evaluating a preliminary consistent estimate l;j of 3 from the jth sub-
sample (j = 1,2), (ii) finding from the uncensored residuals in the jth subsample
a smooth consistent estimate 5\j of the hazard function A, (iii) smoothing /\;/)\J
to obtain a smooth consistent estimate ’l,Z’]' of M'/X, and (iv) using V1 (respectively,
&2) as the weight function for the linear rank statistic of the second (respectively,
first) sample of residuals g2 — 6722, The sum S(b) of these two linear rank statis-
tics is used to define the rank estimator as the minimizer of ||S(b)||. There are,
however, practical difficulties in carrying out this procedure.

First, rank estimators are difficult to compute when 3 is multidimensional. As
noted by Lin and Geyer (1992), rank estimators of multidimensional 3 “require
minimizing discrete objective functions with multiple local minima” and “conven-
tional optimization algorithms cannot be used to solve such optimization prob-
lems.” Computationally intensive search algorithms, such as the simulated an-
nealing algorithm used by Lin and Geyer (1992), are needed to minimize ||S(b)]|].
Another difficulty lies in estimation of A’/A to form the % Although there is an
extensive literature on estimation of the hazard function A and its derivative X\
for censored data, the problem of estimating A’/A from left truncated and right
censored (l.t.r.c.) data is relatively unexplored. As will be shown in Section 2,
simply plugging in /\’J//\J and smoothing the plugged-in estimate do not give good
results unless the sample size is very large.

The present paper addresses these issues in constructing asymptotically effi-
cient estimates of 8 from L.t.r.c. data. Instead of using rank estimators, we use
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M-estimators which have much lower computational complexity {(cf. Kim and
Lai (1999)). These M-estimators are defined for l.t.r.c. data by the estimating
equation

n

SO e{oe (b)) + (1) / G (w)dEy(ulg2 (b))

= w>g? (b)

- [ wwdBe®-) =0, 2
u>t2(b)

where §2(b) = §¢ — bT2?, t2(b) = t2 — bTa?, ¥ is the score function associated
with the M-estimator, and

Fy(ulv) = 1~ I1 {1 = A, 57(0)) /N (D, g7 (b))}, (1.3)

o<y (b)<u, 7=

N(bu) = D I(E(0) < u < g (b)), Alb,w) = Y I(H(0) = w67 = 1)(1.4)
=1 i=1

cf. Lai and Ying (1994). The notation Fy(ulv—) in (1.2) is used to denote (1.3)
in which “v < g?(b)” is replaced by “v < §?(b).” The function Fy(u| — o) is
the product-limit estimate of the common distribution function F'(u) of the ¢; in
(1.1). Note that Fy(u|v) is the product limit estimate of

F(u]v) = P{e; < ule; > v}, (1.5)

Lai and Ying (1994) have shown that an asymptotically optimal choice of ¢ in
(1.2) is

vr= (NN - A= (1.6)

for which the M-estimator of 3 is asymptotically normal with covariance matrix
equal to that given by the information bound of the semiparametric estimation
problem. Indeed this M-estimator of 3 has the same asymptotic properties as
the asymptotically efficient rank estimator. Since the M-estimator has much
lower computational complexity than the rank estimator, it will be better to be
used for adaptive estimation in which the asymptotically eflicient score function
(1.6) is not assumed to be known a priori but has to be estimated from the
data. Therefore, how well to estimate the efficient score function (1.6) from
l.t.r.c. data will be the main factor for reducing computational complexity in the
adaptive estimation. Throughout this paper, we focus attention on the problem
of estimating the score function.
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Section 2 discusses how (1.6) can be estimated. We use a spline approximation
to ¥ and a cross validation method to choose the number of knots. This is shown
to perform much better than the plug-in method in Lai and Ying (1991b) based
on estimating A and A’. Because of the simplicity of the cross validation method
that involves only cross validating the two subsamples with each other, using
this adaptive determination of the score function does not incur much increase
in computational cost.

For complete data, Bickel (1982) showed how an adaptive estimate of 3 can
be constructed so that it is asymptotically as efficient as the maximum likelihood
estimate that requires specification of the density function f of the ¢;. The basic
idea is to replace the unknown score function (logf)’ = f’/f in the maximum
likelihood estimate by f,’,/f,,, where fn is a kernel estimate of f involving a band-
width n that converges to 0 at a sufficiently slow rate as n — oc. Hsieh and
Manski (1987) reported simulation studies showing that the behavior of an adap-
tive estimate can be changed dramatically in samples of moderate size by using
different smoothing parameters 7. They also proposed to choose the smooth-
ing parameter that minimizes, over a preselected set of smoothing parameters,
a bootstrap estimate of the mean squared error of 3. Faraway (1992) used B-
splines to estimate logf so that the smoothing parameter is the number of knots
(instead of the bandwidth in the kernel method) and estimated the mean squared
error of 3 via an asymptotic formula instead of using the bootstrap. Jin (1992)
used B-splines to estimate f’/f directly and proposed another cross validation
method which we extend to l.t.r.c. data in Section 2, where alternative cross
validation methods for l.t.r.c. data are also developed.

2. ESTIMATION OF THE EFFICIENT SCORE FUNCTION

In this section we assume known 3 = 0, so that the y,;(= ¢;) are i.i.d. with
a common distribution function F that has a continuously differentiable density
function f and hazard function A, and consider estimation of the efficient score
function (1.6) based on L.t.r.c. data. An obvious approach is to apply directly a
method proposed by Uzunogullari and VVang (1992) for estimating A and A from
l.t.r.c. data. The method estimates Al")(z) (the rth derivative for » > 1, with
A0) — = A) by A f Koo u dA( ), where A is the estimated cumulative
hazard function, I\m(N) =7 (T“ K.(z/n) and K, is a kernel. The bandwidth
n(= 1,..) to estimate A(")(z) is chosen by a locally adaptive method that attempts
to minimize the mean squared error of 5\(’)(3), replacing the unknown parameters
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in the mean squared error by their estimates. Once A and A(D have been obtained
by this procedure, one can estimate (1.6) by ;\(1)(:)/;\(3) — A(z). However, this
obvious estimate has difficulties when A(z) is close to zero, as shown in Figure
1(a) where the estimate has a steep peak due to dividing by a small number.
It is therefore natural to smooth out such peaks by applying some smoother to
the estimate. but it is not clear how the smoothing parameter should be chosen.
Alternatively, instead of estimating A and A separately, one can apply numerical
differentiation to logA(z) in estimating A’/ as is done in Figure 1(b), which also
shows the need of smoothing the resultant estimate. The l.t.r.c. data in Figure 1
consist of 200 observations (§?,0?.t%) generated from the model of independent
log(y;) ~ N(0,1). log(t;) ~ N(—1.1) and log(c;) ~ N(1,1), with about 28% of
the original sample being censored and truncated. The uncensored observations
are represented by vertical bars along the horizontal axis. The kernels used in A

@ (W) thiF R NE W AT INTETD S S @ RCERE ¢ ipltE 81RE NI I T
o] 1 2 3 4 S 0 1 2 3 4 3

Figurel: (a) Left panel: the estimate A()/A — A. (b) Right panel: the al-
ternative estimate using numerical derivative of log(A) to estimate A/A. Both
estimates are represented by dotted lines, while the solid line stands for the true
score function. The broken curve is obtained by smoothing the dotted curve using
Friedman’s supersmoother.
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and A1) are

_ a2y2 if |
Ko(y):{éw/wm y)? iyl < 1

otherwise

Kaly) = { (~15/4)y(1 = y?) if |y <1

0 otherwise

Friedman’s supersmoother (cf. Hardle (1990)) is used to smooth ;\(1)/;\ ~Xin
Figure 1(a) and to smooth the numerical derivative of logh in Figure 1(b).

We next describe another method to estimate the efficient score function (1.6).
First note that if f is the common density function of the y;(= ¢;) then

f'/f=N/A= A (2.1)

We shall approximate ¥* = f’/f by B-splines, with knots located at certain
quantiles of the product-limit estimate of F' and with the number of knots cliosen
by cross validation for l.t.r.c. data.

2.1. Spline approximations to efficient score function

In an interval (a,b), take k knots a < &1 < -+ < & < b, and define the
linear B-spline basis {By,;: 1 =10,--- ,k + 1} as follows:

(€ka — y)/ (k1 — a) if a <y <&, and ¢ =0,

(Y = Ekim1)/ (ki = Ekizt) I &pim1 <y <&yand 1 <i <k,
Bri(y) = ¢ (Ekiv1 —¥)/ Ehivr = &) &k <y < &upr and 1< i <k,

(Y = &x)/(b—Ek i) if &p <y<bandi=k+1,

0 otherwise,

where we set {0 = a and & 41 = b. We can define By; on the whole real
line by setting By ;(y) = 0 for y ¢ [a,b]. Let Dy ;(y) be the derivative of By,
at y & {&ki-1,6kaEhit1} (ory € {a,&a} if i = 0, y & {&r b} if i = k4 1),
Denote By(y) = (Bro(y), - Bik+1(¥))T, Dr(y) = (Dro(y), -+, Drks1(y)) 7.
Ak(y) = Be(y) BE (y), and

b b b
AdF) = [ 4)aF ), BuF) = [ Bun)dF). DuP) = [ Dey)are2

a

Given the knots a < &3 < -+ < & < b, the best linear spline approxi-
mation to ¢~ is defined as al (F)By(z), where ai(F) minimizes f:(a,{Bk(y) -
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0" (y)))2dF(y) over ar € R**2. Since ¢ = f'/f, integration by parts gives
7 Diy) fly)dy = |7 fdBy = — [2 Bry™dF, and therefore

b .
[ e Bty) - e )ar
b b b
= qof </ Ak(y)dF(y)) ak—Qaf/ By (y)y™(y)dF(y) + / (¥ (y))*dF (y)

b
= o Au(Flax+ 26[Du(F) + [ (57)7dF, (2.3)

noting that Bk vanishes outside [a,b]. Since minimizing (2.3) is equivalent to

minimizing a} Ag(F)ax + 2a} Di(F), it follows that ax(F) = —A; ' (F)Dy(F).
In the case £ = 0, we shall also denote the best linear approximation to ¢~

on [a,b] by al (F)Bo(y) to unify the notation, where we set By(y) = (1.y ~ a)7.

2.2. Knot placement and extension of Jin’s method
for choosing the number of knots

Since F in (2.3) is unknown, we replace it by the product-limit estimate F.
which is defined in (1.3)-(1.4) with v = —oc and (t?(b), y7(b)) replaced by (t9.
7?). Take 0 < p < p* < 1 and set a = F~(p), b = F~(p*). The knots ki
(i =1,---,k) are chosen to be the evenly spaced quantiles

ki = F ' (p+ (p" = p)i/(k+1)). (2.4)

Ideally we would like to choose the number of knots to minimize j:(a[(ﬁ)Bk(y) -
¥v*(y))2dF(y), or equivalently, to minimize L(k, F, F), where

L(k,G,F) = a} (G)Ar(F)ax(G) + 2al (G)Dy(F). (2.5)

Since F in (2.5) is unknown, one approach to implement the minimization of (2.5)
with G = F is to extend Jin’s method for complete data to the l.t.r.c. situation

as follows:

1. Split the data into two subsamples { (97, 67,t3), -+, (4n,, 05, ta, ) 1 {(F5, 41- oan,
to 1) (U0 4np0 Ony bng s Ty 4y )}y Where ng = [71/2] and ng = n—n,. Let FU

and F(2) be the product-limit estimates based on these two subsamples sepa-
rately.

2. Compute L(k, F(), F?)y = o (F) 4, (F? )ak(F DY 424 {(F ))DA(F 2)) for
k=1.,2,---, and find the first local minimizer ke, of L(k, F(1), F(2)) j.e.

L0, FM F®) > o> Lkey, FV, F®) < L{ke + 1, FD, F3)),
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3. Interchange F() and F? in Step 2, yielding the first local minimizer k., of
L(k, F) FQ)y,

4. Suppose l%’ < ke, for definiteness. Compute ST(k, F) = k™! Z;‘;& f(a}‘(F)BJ(y)
—a} (F)Bi(y))? dF and find the first local minimizer k of ST (k,F) over k € I(n),
where I(n) = {k : &, < k < EL}. Thus ST(K,,F) > --- > ST(k. F) <
ST(k + 1, F). If there is no such k,, within I(n), choose k, = '1“31 This step is
called “stationary correction” by Jin (1992), who explains its motivation as an
attempt to ensure that (LZVH (F)B,Hl does not differ too much from «; T(F)By for

the chosen k and thereby to reduce the variance of k.

2.3. Cross validation for censored and truncated data

To begin with, note that an alternative way to combine L(k, P, F2)y and
Lk, F®) FM)Y iy Step 2 and 3 above is simply to add them so that k is defined
as the minimizer of L(k, F(V), F2)) 4 L(k, F?) F(1)) gver 0 < k < K, some
prescribed upper bound, instead of using Jin’s stationary correction to combine
the two subsample results. This is in fact tantamount to two-fold cross validation,
as will be discussed below.

More generally, for m-fold cross validation, the dataset § = {(g¢,89.t9).---,
(92,062,t2)} is randomly divided into m disjoint subsets Sy.---, S, with size
[n/m)] for the first m — 1 subsets and n — (m — 1)[n/m] for S,,. Let F*) be
the product-limit estimate of F based on S, and let G, denote the product-limit
estimate of F based on § —8,. We use §—8,, as the “training sample”, from which
estimates of the coefficients of the linear spline approximation are computed,
and use §, as the “test sample”, leading to the measure L(k,Gl,,F(")) of the
mean squared error (of using the training sample estimates to predict the efficient
scores of the test sample values) minus f:(w*)ng, in view of (2.3). The m-fold
cross validation approach chooses k to be the minimizer of 37"  L(k,G,. FW)
over k < K,. This way of defining m-fold cross validation requires n/m to be
large enough so that F) estimates F reasonably well. In the case of complete
data, such requirement is actually not needed and one can in fact carry out
full (“leave one out”) cross validation with m = n, since h(y;) is an unbiased
estimate of ffooo hdF. Suppose h vanishes outside an interval (a,b). When y; is
not completely observable due to censoring and truncation, we can replace the



Adaptive Estimation of Efficient Score Function 117

unobservable h(y;) by
P50 = R + (-6 [ haF(l)
o <y<b

+/ h(y)dF(y)/(1 - F(2-)),  (2.6)
<y<t¢

where F(u|v) is defined in (1.5); see Eq. (2.25) of Lai and Ying (1994). Although
F(y—) = F(y) since F is continuous, we still write F(t7—) in (2.6), where F will
be replaced later by the product-limit estimate which is discrete. In (2.6), it is
assumed that F is known; in fact, E{hp(y?,62,t9)} = (j: hdF)/P{yi Acy > t}.
cf. Lemma 1 of Gross and Lai (1996). When F is unknown, we replace it in hr by
the product-limit estimate F(*) based on the test sample S, when n/m is not too
small, or by the product-limit estimate F based on entire sample otherwise. Let
h¥) = by, h = hi, let #(S,) denote the size of the subsample S,,. Setting first
h = Ag and then h = Dy, an alternative to »_ "  L(k,G,, F)Y as the criterion
for m-fold cross validation is

ST S (G A 6.1 ak(G)

v=1 (§?2,67,t7)ES,
+ 20} (G,)Dr(32,62,t9)}/#(S (2.7)

In the censored case without truncation variables if we replace Ay and Dy in (2.7)
by 4&”) and D,(C ), then (2.7) reduces to L(k,G,, F") as a consequence of
the following identity due to Susarla, Tsai and Van Ryzin (1984):

> w8/ = [ hyaEW) (2.8)

(yJ ESU

In practice, taking p = 0.05 and p* = 0.95, which amounts to omitting 5% of
either tail of F, suffices to provide an adequate range of y’s at which the efficient
score function can be approximated by splines for use in adaptive estimation
problems, while maintaining stability of the approximation.

2.4. Numerical examples

Figure 2(a)-(d) represent the true and the estimated score functions based
on a simulated dataset of 200 observations (37, 67,t¢) generated from each of the
following models. The vertical line segments along the horizontal axis represent
the uncensored observations.
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(a) Lognormal: log(y;) R N(0,1) and log(t;) LS N(-1,1),

log(c;) b N[1,1],
(b) Contaminated normal: y; Hid 0.9N¥(0.1/9)4+0.1¥(0,9) and ¢; Hi N(-1,1).
c; "RV N(0.8,1),

(c) Normal: y; b N(0,1) and ¢; L N(-1,1),
c; =t; + u; - max{0.5,e7%} with u; L Uf0,0.1],

ii.d. Lid.

(d) Beta: y; ~ Beta(2,2) and ¢, ~ U[-1,1],
Lid. pern =
C; o~ L [O.D, l].
(a) (b)
¢ «
| |
- '\; < :
— — Sounela)
\ ~ - -~ Soine(F)
N |
W\ o~ (=]
) Ve \\
R / o
< S~ - Z o
g TEnTIL < -
o~ e R
' B _- 11+ JHIR0 SR ] ] I3 © [l ALY tat(gaeie ik qECRud AR
0 1 2 3 4 5 [ -1.0 0.5 0.0 Q0.3 1.0
(c) (d)
....... }T(/ua ‘ ;me X
- arnel ——
~ . —= gonet w =2 SSinet
D - i -
D T Hned i
y— \‘\
° (=] __//'\\\ ———————
) [Ty)
NN ' »
~ PEE LI AN DR R TR ge - CHUETY 0 D3 VOCORET AR P C A0 C T LR II0 e 10 {
-3 -2 -1 o] 1 2 0.2 0.4 0.6 0.8

Figure 2: (a) Top left: lognormal, (b) top right: contaminated normal, (c)
bottom left: normal, (d) bottom right: beta models.
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There are four estimated score functions in each plot. They are labeled Ker-
nel, Spline(J), Spline(4) and Spline(F) respectively. “Kernel” refers to the esti-
mate obtained by smoothing 5\(1)/;\ — X using Friedman’s supersmoother. The
“Spline(-)” estimates refer to the estimated linear spline approximations using
different methods to choose the number of knots: Spline(J) uses the extension of
Jin’s method in Section 2.2; Spline(4) uses the 4-fold cross validation criterion
S L(k,G®), F()); Spline(F) uses the full cross validation criterion Cr(k).

In Figure 2(b) and (d), all spline estimates choose the same number of knots
and therefore agree with each other because of the way (2.4) in which knots are
placed. In Figure 2(c), Jin’s method and 4-fold cross validation pick no knot
between a and b while full cross validation chooses 2 knots. In Figure 2(a)- (c),
all estimates are quite close to the true score function. However, in Figure 2(d),
the kernel estimate is relatively flat and differs substantially from the true score
function, which is well approximated by the spline estimates that coincide with
each other.

Table 1: Comparison of the mean squared errors (MSE) of different estimates
of the efficient score function in four models, whose censoring proportion p. and
truncation proportion p; are also indicated.

Model Estimate MSE SE
Normal Kernel 0.151  0.096
pe = 0.27 Spline(J) 0.074 0.023
pr = 0.28 Spline(4) 0.075  0.022

Spline(F) 0.050  0.024
Contaminated Kernel 3.001  1.100
normal Spline(J) 1.499  0.792
pe = 0.26 Spline(4) 1.220  1.030
pr = 0.28 Spline(F) 0.580  0.320
Lognormal Kernel 4.123  2.711
pe = 0.27 Spline(J) 1.401  0.542
pr = 0.26 Spline(4) 1.799  0.699

Spline(F) 1489  0.811
Beta Kernel 18.765 10.110
pe = 0.28 Spline(J) 7.234  7.310
e = 0.29 Spline(4) 8.792 7.011

Spline(F) 4516  2.342
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Table 1 compares the mean squared errors
MSE = E(3(Y) — ¢"(Y))?

of the estimates q?w obtained from (3¢, 0?, t9), i =1,---,200, by these four meth-
ods, where Y is generated from F and is independent of the (y;, cj. t;) underlying
the observed (77, 67,¢?). Each MSE in Table 1 is based on 100 simulations, and
its associated standard error (SE) is also included in the table. The results in Ta-
ble 1 show that the kernel estimate has considerably larger MSE than the spline
estimates, and that the spline estimate with full cross validation tends to have a

smaller MSE than the other spline estimates.

3. CONCLUSION

For regression analysis with complete data, the least square estimate is widely
used because of its simplicity that may have inferior performance if the errors are
non-normal. Using a nonlinear score function that differs from v(r) = » for
the least squares estimate leads to an M-estimator with greater computational
complexity but with better robustness properties. For l.t.r.c. data, there are no
computational advantages in choosing #(z) = z for the estimating equation (1.2)
defining M-estimators. In general proper choice of ¢ depends on the underlying
distribution F of the €;. Our numerical study shows that for samples of size 100
and larger, one can estimate 1 reasonably well and achieve good performance
of the adaptive estimator of the score function by using regression splines and a
relatively simple cross validation method for determining the number of knots.
despite substantial truncation and censoring of the response variable.
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