• 제목/요약/키워드: cross-validation

검색결과 1,016건 처리시간 0.024초

Validation of the Disaster Adaptation and Resilience Scale for Vulnerable Communities in Vietnam's Coastal Regions

  • Thanh Gia Nguyen;Binh Thang Tran;Minh Tu Nguyen;Dinh Duong Le
    • Journal of Preventive Medicine and Public Health
    • /
    • 제57권3호
    • /
    • pp.279-287
    • /
    • 2024
  • Objectives: This study validated the Vietnamese version of the Disaster Adaptation and Resilience Scale (DARS) for use in vulnerable communities in Vietnam. Methods: This was a cross-sectional study involving 595 adults from 2 identified communities. The original DARS assessment tool was translated, and the validity and reliability of the Vietnamese version of DARS (V-DARS) were assessed. The internal consistency of the overall scale and its subscales was evaluated using Cronbach's alpha and McDonald's omega reliability coefficients. Confirmatory factor analysis (CFA) was employed to evaluate its construct validity, building upon the factor structure identified in exploratory factor analysis (EFA). Construct validity was assessed based on convergent and discriminant validity. Results: Following the established criteria for EFA, 8 items were removed, resulting in a refined V-DARS structure comprising 35 items distributed across 5 distinct factors. Both alpha and omega reliability coefficients indicated strong internal consistency for the overall scale (α=0.963, ω=0.963) and for each of the 5 sub-scales (all>0.80). The CFA model also retained the 5-factor structure with 35 items. The model fit indices showed acceptable values (RMSEA: 0.072; CFI: 0.912; TLI: 0.904; chi-square test: <0.01). Additionally, the convergent and discriminant validity of the V-DARS were deemed appropriate and satisfactory for explaining the measurement structure. Conclusions: Our findings suggest that the V-DARS is a valid and reliable scale for use within vulnerable communities in Vietnam to assess adaptive responses to natural disasters. It may also be considered for use in other populations.

소프트 보팅을 이용한 합성곱 오토인코더 기반 스트레스 탐지 (Convolutional Autoencoder based Stress Detection using Soft Voting)

  • 최은빈;김수형
    • 스마트미디어저널
    • /
    • 제12권11호
    • /
    • pp.1-9
    • /
    • 2023
  • 스트레스는 감당하기 어려운 외부 또는 내부 요인으로부터 유발되는 것으로 현대 사회의 주요한 문제 중 하나이다. 높은 스트레스가 장기적으로 지속되면 만성적으로 발전할 수 있으며, 건강 및 생활 전반에 큰 악영향을 초래할 수 있다. 그러나 만성적인 스트레스를 겪는 사람들은 자신이 스트레스를 받고 있는지 알아차리기 어렵기 때문에 사전에 스트레스를 인지하고 관리하는 것이 중요하다. 웨어러블 기기로부터 측정된 생체 신호를 이용하여 스트레스를 탐지한다면, 스트레스를 효율적으로 관리할 수 있을 것이다. 그러나 생체 신호를 이용하는 데에는 두 가지 문제점이 있다. 첫째로 생체 신호에서 수작업 특징을 추출하는 것은 바이어스를 발생시킬 수 있으며, 두 번째는 실험 주체에 따라 분류 모델 성능의 변이가 클 수 있다는 것이다. 본 논문에서는 데이터의 핵심적인 특징을 표현할 수 있는 합성곱 오토인코더를 이용해 바이어스를 줄이고 앙상블 학습 중 하나인 소프트 보팅을 이용해 일반화 능력을 높여 성능의 변이를 줄이는 모델을 제안한다. 모델의 일반화 성능을 확인하기 위하여 LOSO 교차 검증 방법을 이용하여 성능을 평가한다. 본 논문에서 제안한 모델은 WESAD 데이터셋을 이용하여 높은 성능을 보여주었던 기존의 연구들보다 우수한 정확도를 보임을 확인하였다.

  • PDF

머신러닝 학습 알고리즘을 이용한 광주천 수질 분석에 대한 예측 모델 연구 (A Study on the Prediction Model for Analysis of Water Quality in Gwangju Stream using Machine Learning Algorithm)

  • 정유정;이정재
    • 한국전자통신학회논문지
    • /
    • 제19권3호
    • /
    • pp.531-538
    • /
    • 2024
  • 수질 환경의 중요성이 강조되고 있는 가운데 광주광역시 도시 하천의 수질개선을 위한 수질 지표는 수생 생태계에 영향을 미치는 중요한 요소로 정확한 예측이 필요하다. 본 연구에서는 XGBoost와 LightGBM 머신러닝 알고리즘을 활용하여 광주천의 중요한 지점인 하류 평촌교(PyeongchonBr)와 상류 방학교(BangHakBr_Gwangjucheon1) 수계의 수질 검사 항목 중 통계적 검증 결과 유의미한 항목인 질소(TN), 질산염(NO3), 암모니아 양(NH3) 세 가지 수질 지표를 예측하는 연구를 수행하였고, 회귀 모델 평가 지표인 RMSE를 이용하여 예측 모델의 성능을 평가하였다. 수계별 개별적인 모델을 구현하여 교차 검증 후 성능을 비교한 결과, XGBoost 모델이 뛰어난 예측 능력을 보였다

An In Silico Drug Repositioning Strategy to Identify Specific STAT-3 Inhibitors for Breast Cancer

  • Sruthy Sathish
    • 통합자연과학논문집
    • /
    • 제16권4호
    • /
    • pp.123-131
    • /
    • 2023
  • Breast cancer continues to pose a substantial worldwide health challenge, thereby requiring the development of innovative strategies to discover new therapeutic interventions. Signal Transducer and Activator of Transcription 3 (STAT-3) has been identified as a significant factor in the development of several types of cancer, including breast cancer. This is primarily attributed to its diverse functions in promoting tumour formation and conferring resistance to therapeutic interventions. This study presents an in silico drug repositioning approach that focuses on identifying specific inhibitors of STAT-3 for the purpose of treating breast cancer. We initially examined the structural and functional attributes of STAT-3, thereby elucidating its crucial involvement in cellular signalling cascades. A comprehensive virtual screening was performed on a diverse collection of drugs that have been approved by the FDA from zinc15 database. Various computational techniques, including molecular docking, cross docking, and cDFT analysis, were utilised in order to prioritise potential candidates. This prioritisation was based on their predicted binding energies and outer molecular orbital reactivity. The findings of our study have unveiled a Dihydroergotamine and Paritaprevir that have been approved by the FDA and exhibit considerable promise as selective inhibitors of STAT-3. In conclusion, the utilisation of our in silico drug repositioning approach presents a prompt and economically efficient method for the identification of potential compounds that warrant subsequent experimental validation as selective STAT-3 inhibitors in the context of breast cancer. The present study highlights the considerable potential of employing computational strategies to expedite the drug discovery process. Moreover, it provides valuable insights into novel avenues for targeted therapeutic interventions in the context of breast cancer treatment.

원전 구조물의 경년열화를 고려한 지진응답예측 기계학습 모델의 성능평가 (Performance Evaluation of Machine Learning Model for Seismic Response Prediction of Nuclear Power Plant Structures considering Aging deterioration)

  • 김현수;김유경;이소연;장준수
    • 한국공간구조학회논문집
    • /
    • 제24권3호
    • /
    • pp.43-51
    • /
    • 2024
  • Dynamic responses of nuclear power plant structure subjected to earthquake loads should be carefully investigated for safety. Because nuclear power plant structure are usually constructed by material of reinforced concrete, the aging deterioration of R.C. have no small effect on structural behavior of nuclear power plant structure. Therefore, aging deterioration of R.C. nuclear power plant structure should be considered for exact prediction of seismic responses of the structure. In this study, a machine learning model for seismic response prediction of nuclear power plant structure was developed by considering aging deterioration. The OPR-1000 was selected as an example structure for numerical simulation. The OPR-1000 was originally designated as the Korean Standard Nuclear Power Plant (KSNP), and was re-designated as the OPR-1000 in 2005 for foreign sales. 500 artificial ground motions were generated based on site characteristics of Korea. Elastic modulus, damping ratio, poisson's ratio and density were selected to consider material property variation due to aging deterioration. Six machine learning algorithms such as, Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), were used t o construct seispic response prediction model. 13 intensity measures and 4 material properties were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks present good prediction performance considering aging deterioration.

Hybrid machine learning with HHO method for estimating ultimate shear strength of both rectangular and circular RC columns

  • Quang-Viet Vu;Van-Thanh Pham;Dai-Nhan Le;Zhengyi Kong;George Papazafeiropoulos;Viet-Ngoc Pham
    • Steel and Composite Structures
    • /
    • 제52권2호
    • /
    • pp.145-163
    • /
    • 2024
  • This paper presents six novel hybrid machine learning (ML) models that combine support vector machines (SVM), Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), extreme gradient boosting (XGB), and categorical gradient boosting (CGB) with the Harris Hawks Optimization (HHO) algorithm. These models, namely HHO-SVM, HHO-DT, HHO-RF, HHO-GB, HHO-XGB, and HHO-CGB, are designed to predict the ultimate strength of both rectangular and circular reinforced concrete (RC) columns. The prediction models are established using a comprehensive database consisting of 325 experimental data for rectangular columns and 172 experimental data for circular columns. The ML model hyperparameters are optimized through a combination of cross-validation technique and the HHO. The performance of the hybrid ML models is evaluated and compared using various metrics, ultimately identifying the HHO-CGB model as the top-performing model for predicting the ultimate shear strength of both rectangular and circular RC columns. The mean R-value and mean a20-index are relatively high, reaching 0.991 and 0.959, respectively, while the mean absolute error and root mean square error are low (10.302 kN and 27.954 kN, respectively). Another comparison is conducted with four existing formulas to further validate the efficiency of the proposed HHO-CGB model. The Shapely Additive Explanations method is applied to analyze the contribution of each variable to the output within the HHO-CGB model, providing insights into the local and global influence of variables. The analysis reveals that the depth of the column, length of the column, and axial loading exert the most significant influence on the ultimate shear strength of RC columns. A user-friendly graphical interface tool is then developed based on the HHO-CGB to facilitate practical and cost-effective usage.

영상 데이터를 이용한 딥러닝 기반 작물 건강 상태 분류 연구 (Deep Learning-Based Plant Health State Classification Using Image Data)

  • 세이드 알리 에스거;이재환;알바로 푸엔테스;윤숙;박동선
    • 사물인터넷융복합논문지
    • /
    • 제10권4호
    • /
    • pp.43-53
    • /
    • 2024
  • 토마토에는 리코펜, β-카로틴 및 비타민 C와 같은 영양소가 풍부하고 세계적으로 많이 소비되는 채소 중 하나이다. 그러나 종종 생물학적 및 환경적 스트레스 요인으로 인해 수확량 손실이 발생한다. 전통적인 작물 건강 평가는 오류가 발생하기 쉽고 대규모 생산에 비효율적이다. 이러한 문제를 해결하기 위해 건강 상태에 대해 1~5로 주석을 메긴 토마토 전체 생육기간을 다루는 포괄적인 데이터 세트를 수집하였다. 우리는 Channel-wise attention과 Grouped convolution을 사용한 Attention-Enhanced DS-ResNet 아키텍처와 새로운 학습 기법을 제안한다. 우리의 모델은 5-fold 교차 검증을 사용하여 전체 정확도 80.2%를 달성하여 작물의 건강 상태를 정확하게 분류하는데 있어 견고성을 보여주었다.

시료 전처리 방법이 근적외선분광법을 이용한 옥수수 사일리지의 화학적 조성분 평가에 미치는 영향 (Effect of Sample Preparations on Prediction of Chemical Composition for Corn Silage by Near Infrared Reflectance Spectroscopy)

  • 박형수;이종경;이효원;황경준;정하연;고문석
    • 한국초지조사료학회지
    • /
    • 제26권1호
    • /
    • pp.53-62
    • /
    • 2006
  • 본 연구는 시료 및 스펙트럼의 전처리 방법이 근적외선 분광법을 이용한 옥수수 사일리지의 화학적 조성분의 예측능력에 미치는 영향을 평가하기 위해 수행되었다. 시료의 전처리 방법은 건조하여 분쇄하는 방법(Oven Dried Grinding), 액화 질소처리 후 분쇄하는 방법(Liquid Nitrogen Grinding) 그리고 생사일리지(Intact Fresh)처리로 하였으며 4개의 스펙트럼의 수처리(1,4,4, 2,6,4, 2,10,5) 방법을 이용하여 다변량회귀분석법인 변형부분최소자승회귀법(MPLS)을 통해 검량식을 작성하였다. 시료의 전처리 방법에 의해서 유도된 검량식의 예측 능력은 섬유소 성분(NDF, ADF)과 일반 조성분(CP, Ash) 모두에서 Oven dried grinding (ODG) > Liquid nitrogen grinding (LNG)>Intact fresh (IF) 처리 순으로 우수하였다. 또한 스펙트럼의 수처리 방법에 의한 결과는 시료의 전처리 방법에 따라 그 예측 능력이 다르게 나타났다. 옥수수 사일리지의 섬유소 함량을 예측하기 위한 최적의 시료 전처리 및 스펙트럼 수처리 방법은 NDF는 ODG 처리에 2,10,5 수처리 방법 $(R^2=0.86)$, ADF는 ODG 처리에 2,10,5 수처리 방법 $(R^2v=0.93)$이 가장 우수한 전처리 방법으로 나타났다. 조단백질 함량과 조회분 함량을 측정하기 위한 최적의 시료 전처리 및 스펙트럼 수처리 방법은 조단백질은 ODG 처리에 1,4,4 수처리 방법$(R^2v,=0.91)$, 조회분은 ODG 처리에 2,10,5 수처리 방법$(R^2v=0.89)$이 가장 우수한 전처리 방법으로 판단된다. 이상의 연구 결과를 종합해보면 근적외선 분광법을 이용한 사일리지의 화학적 조성분 함량 측정은 적은 오차 범위 내에서 신속하고 정확한 분석법이 될 수 있음을 확인 할 수 있었다. 비록 원물 생시료(IF)에 대한 직접적인 측정은 다소 예측 정확성이 떨어지지만 현장 적용성과 편리성을 높이기 위해서는 생시료의 측정시 오차를 줄일 수 있는 스펙트럼의 수처리 방법이나 산란보정 방법과 같은 데이터 처리기법에 대한 더 많은 연구가 앞으로 진행되어야 한다고 생각되어진다.

지상용 초분광 스캐너를 활용한 사과의 당도예측 모델의 성능향상을 위한 연구 (Study of Prediction Model Improvement for Apple Soluble Solids Content Using a Ground-based Hyperspectral Scanner)

  • 송아람;전우현;김용일
    • 대한원격탐사학회지
    • /
    • 제33권5_1호
    • /
    • pp.559-570
    • /
    • 2017
  • 본 연구에서는 야외에서 자료 취득이 가능하며 한 번에 다량의 사과를 촬영할 수 있는 지상용 초분광 스캐너를 활용하여 사과의 분광정보와 당도와의 부분최소제곱회귀분석(PLSR, Partial Least Square Regression)을 수행하였으며, 최적의 예측모델을 구축하기 위한 다양한 전처리기법의 적용가능성을 평가하고 VIP(Variable Importance in Projection)점수를 통한 최적밴드를 산출하였다. 이를 위하여 360-1019 nm영역에서 촬영된 515밴드의 초분광 영상에서 70개의 분광곡선을 취득하였으며, 디지털광도계를 이용하여 당도($^{\circ}Brix$)를 측정하였다. 사과의 분광특성과 당도사이의 회귀모델을 구축하였으며, 최적의 예측모델은 모델 예측치와 실측치간의 결정계수($r_p^2$, coefficient of determination of prediction)와 RMSECV(Root Mean Square Error of Cross Validation), RMSEP(Root Mean Square Error of Prediction)등을 고려하여 선정하였다. 그 결과 산란보정 기법의 대표적인 MSC(Multiplicative Scatter Correction)의 기반의 전처리기법이 가장 효과적이었으며, MSC와 SNV(Standard Normal Variate)를 조합한 경우 RMSECV와 RMSEP가 각각 0.8551과 0.8561로 가장 낮았고, $r_c^2$$r_p^2$은 각각 0.8533과 0.6546으로 가장 높았다, 또한 360-380, 546-690, 760, 915, 931-939, 942, 953, 971, 978, 981, 988, 992-1019 nm 등이 당도 측정을 위한 가장 영향력 있는 파장영역으로 나타났다. 해당 영역의 분광값을 가지고 PLSR을 수행한 결과, 전파장대를 사용할 때보다 RMSEP가 0.6841로 감소하고 $r_p^2$는 0.7795로 증가하는 것을 확인하였다. 본 연구를 통하여 사과의 당도측정에 있어 야외에서 취득한 초분광 영상자료의 활용 가능성을 확인하였으며, 이는 필드자료 및 센서 활용분야의 확장가능성을 보여준다.

시료 전처리 방법이 근적외선분광법을 이용한 이탈리안 라이그라스 사일리지의 화학적 조성분 및 발효품질 평가에 미치는 영향 (Effect of Sample Preparation on Predicting Chemical Composition and Fermentation Parameters in Italian ryegrass Silages by Near Infrared Spectroscopy)

  • 박형수;이상훈;최기춘;임영철;김종근;서성;조규채
    • 한국축산시설환경학회지
    • /
    • 제18권3호
    • /
    • pp.257-266
    • /
    • 2012
  • 본 연구는 조사료 품질평가에서 근적외선 분광법의 현장 이용성 확대를 위하여 시료 전처리 방법에 따른 이탈리안 라이그라스 사일리지의 사료가치 및 발효품질의 예측정확성을 평가하기 위하여 수행되었으며 검량식 개발을 위하여 이탈리안 라이그라스 사일리지를 전북지역에서 174점을 수집하였다. 시료 전처리 방법은 사일리지를 건조 후 분쇄하는 방법과 원물 (생) 시료를 건조 분쇄하지 않는 방법을 두었으며 각각의 시료는 근적외선 분광기를 이용하여 스펙트럼을 측정한 후 측정된 스펙트럼과 실험실 분석값간에 상관관계를 이용한 다변량회귀분석법을 통하여 검량식을 유도한 다음 각 성분별로 예측 정확성을 평가하였다. 시료 전처리 방법에 따른 이탈리안 라이그라스 사일리지의 수분함량의 예측 정확성은 건조 분쇄하지 않은 원물(생)시료를 그대로 측정하는 방법 (SECV 1.37%, $R^2$=0.96)이 건조 분쇄처리 방법 (SECV 4.31%, $R^2$=0.68) 보다 예측 정확성이 높게 나타났다. ADF와 NDF 함량의 예측 정확성은 건조 후 분쇄처리한 방법이 개발된 검량식을 상호검증 (SECV)한 결과 각각 0.72% ($R^2$=0.97)와 0.85% ($R^2$=0.94)로 높게 나타났으며 조회분함량 평가에 대한 검량식개발 결과는 건조분쇄하지 않은 원물(생) 시료 전처리 방법에서 가장 낮은 정확성 (SECV 1.17%, $R^2$=0.66)을 나타내었다. pH와 젖산함량은 건조 분쇄 전처리 방법에서 각각 0.48 ($R^2$=0.87)와 0.24% ($R^2$=0.87)로 우수한 결과를 나타내었다. 이상의 연구결과를 종합해보면 근적외선분광법을 이용한 시료 전처리 방법에 따른 이탈리안 라이그라스 사일리지의 사료가치 및 발효품질 평가에 대한 예측정확성은 수분함량을 제외하고는 건조 후 분쇄하는 시료 전처리 방법이 예측 정확성 측면에서는 우수한 것으로 나타났으나 시료 전처리가 필요치 않은 원물(생) 시료의 측정 방법도 매우 양호한 예측 정확성을 보임으로써 실제 근적외선분광법의 현장 활용측면에서는 매우 유용한 전처리 방법으로 판단되어진다.