• Title/Summary/Keyword: cross-section deformation

Search Result 273, Processing Time 0.026 seconds

Stability evaluation of foundation settlement of power transmission tower (송전철탑의 기초침하에 대한 안정성 평가)

  • Lee, Dae-Soo;Cho, Hwa-Kyung;Kim, Dae-Hong;Ham, Bang-Uk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.687-696
    • /
    • 2005
  • Safety diagnosis was conducted to evaluate the long-term stability evaluation of power transmission tower of which deformation of the upper structural elements occurred. To assess the cause of the structural deformation, field investigation including BIPS, down-hole test, concrete pile coring and finite element analysis were carried out. From these studies, the major cause of deformation was found due to the heavily fractured layer and weathered soil topography at the pile tip area. The cement-milk grouting method was proposed to reinforce these weak zone around the pile tip area. Also, the increase of cross-section and stiffness for steel members of upper tower structures was suggested. Instrumental monitoring was proposed as well to verify reinforcing effect.

  • PDF

Buckling of plates including effect of shear deformations: a hyperelastic formulation

  • Musa, Idris A.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1107-1124
    • /
    • 2016
  • Consistent finite strain Plate constitutive relations are derived based on a hyperelastic formulation for an isotropic material. Plate equilibrium equations under finite strain are derived following a static kinematic approach. Three Euler angles and four shear angles, based on Timoshenko beam theory, represent the kinematics of the deformations in the plate cross section. The Green deformation tensor has been expressed in term of a deformation tensor associated with the deformation and stretches of an embedded plate element. Buckling formulation includes the in-plane axial deformation prior to buckling and transverse as well as in-plane shear deformations. Numerical results for a simply supported thick plate under uni-axial compression force are presented.

Application of DEM to Simulate Interaction between Soil and Tire Lug

  • Oida, A.;Ohkubo, S.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • Using the modified DEM (Distinct Element Model), which we proposed, the effect of cross section of tire lug on the tire performance was simulated. Though the DEM has an advantage over the FEM when it is applied to simulate the behavior of discrete assembly of particles such as soil, there was still a problem in the case of conventional DEM, that the simulated movement of particles was too free. We constructed a new mechanical model (modified DEM) which can take account of the effect of adhesion between particles. It is shown that the soil deformation is simulated by the modified DEM better than the conventional DEM. Comparing the simulated soil reaction to the tire lug with the experimental results, the adequate DEM parameters were found. It is also indicated possible to find the effect of lug cross section shape on the tractive performance of tire by the DEM simulation.

  • PDF

Free Vibration Analysis of Curved Beams with Varying Cross-Section (단면적이 변하는 곡선보의 진동해석)

  • Kang, Ki-Jun;Kim, Young-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.453-462
    • /
    • 2009
  • The differential quadrature method(DQM) is applied to the free in-plane vibration analysis of circular curved beams with varying cross-section neglecting transverse shearing deformation. Natural frequencies are calculated for the beams with various opening angles and end conditions. Results obtained by the DQM are compared with available results by other methods in the literature. It is found that the DQM gives good accuracy even with a small number of grid points. In addition, the corrected results are given for the beams not previously presented for this problem.

Vibration Analysis of a Rotating Multi-Packet Blade System Having Tapered Cross Section (회전하는 테이퍼 단면 다중 패킷 블레이드 시스템의 진동 해석)

  • Kim, Min-Kwon;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.832-837
    • /
    • 2008
  • A modeling method for the modal analysis of a multi-packet blade system having tapered cross section undergoing rotational motion is presented in this paper. Blades are idealized as tapered cantilever beams that are fixed to a rotating disc. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. Hybrid deformation variables are employed to derive the equations of motion. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters including tapered ratio and the number of packets as well as blades on the modal characteristics of the system are investigated with some numerical examples.

  • PDF

A study on the flexural virations for the ring with symmetrical cross section (대칭단면 원환부품의 평면진동에 관한 연구)

  • 김광식;김강년
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.56-62
    • /
    • 1984
  • Various automotive and machine parts are having the shape of circular ring and the study and the verification of its dynamic characteristics can be the important basis of quality control and improvement of performance of inner and outer race of ball and roller radial bearing, ring gear, seal, etc. In this study, three separate sets of governing equations on the flexural vibration of circular ring were formulated each considering the effects of viscous damping, rotatory inertia and shear deformation, and three frequency formulas were derived. Numerical values of frequencies of circular and rectangular cross section ring were tabulated and compared with experimental value. Some important parameters were found in the ring vibration characteristics.

  • PDF

Structural behaviour of concrete beam under electrochemical chloride extraction against a chloride-bearing environment

  • Ki Yong Ann;Jiseok Kim;Woongik Hwang
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.49-61
    • /
    • 2024
  • The present study concerns a removal of chloride ions and structural behaviour of concrete beam at electrochemical chloride extraction (ECE). The electrochemical properties included 1000 mA/m2 current density for 2, 4 and 8 weeks. It was found that an increase in the duration of ECE resulted in an increase in the extraction rate of chlorides, in the range of 35-85%, irrespective of chloride contamination. In structural behaviour, the strength and maximum bending moment of specimen was always lowered by ECE. Moreover, the flexural rigidity and bending stiffness were reduced by the loss of effective cross-section area in the linear elastic range. Simultaneously, the inertia moment was substantially subjected to 70% loss of the cross-section by the tensile strain at the condition of the failure. However, a lower rate of the inertia moment reduction was achieved by ECE, implying the higher resistance to the cracking, but the higher risk of deformation.

Characteristics of Channel Bend Reach and Shape of Cross-Section (유로 만곡부 특성과 단면현상)

  • Song, Jai Woo;Park, Young Jin;Lee, Yong Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1191-1197
    • /
    • 1994
  • The purpose of this study is to examine morphometric characteristics in a channel bend reach. The new shape factor is suggested that channel deformation rate of cross section (${\Delta}A_s$) showed the variation of concentrated location of force due to the current and the variation of erosional section in alluvial channel. In the downstream direction the meaning of decreasing "${\Delta}A_s$" is the stability of channel bed. This study was analyzed morphological characteristics of cross section-width of channel ($W_s$), width to the thalweg ($W_{th}$), maximum depth ($D_{th}$)-on the Guem River, and typical cross sections in channel bend were proposed. The channel migration rate (M) for the study river was represented that the zones of curvature ratio (R/W) with 2~4 were larger 12% than other zones.

  • PDF

THE PREVENTION OF THE LONGITUDINAL DEFORMATION DUE TO FILLET WELDING BY USING INDUCTION HEATING

  • Park, Jeong-Ung;Lee, Chin-Hyung;Chang, Kyong-Ho
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.816-825
    • /
    • 2002
  • During the manufacture of a ship, longitudinal deformation is produced by fillet welding on the BuiltUp beam used to improve the longitudinal strength of a ship. This deformation needs a correcting process separate from a manufacture process and decreases productivity and quality. This deformation is caused by welding moment, which is the value multiplied the shrinking force due to welding by the distance from the neutral axis on a cross section of Built-Up beam. This deformation can be offset by generating a moment which is the same magnitude with and is located in an opposite direction to the welding moment on web plate by induction heating. Accordingly, this study clarifies the creation mechanism of the longitudinal deformation on Built-Up beam with FEM analysis and presents the preventative method of this deformation by induction heating basing the mechanism and verifies its validity through analysis and experiments. The induction heating used here is performed by deciding its location and quantity with experiments and simple equations and by applying them to areal structure.

  • PDF

A Study on the Effect of Transversal Warping In Thick Plate (두꺼운 판의 전단 Warping 영향에 대한 연구)

  • Lee, Sang-Gab;Choi, Won-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.77-89
    • /
    • 1996
  • An enormous amount of efforts has been devoted to the development of finite elements for the bending problem of thick plates, especially based on Mindlin plate theory. Here, an approximate Constant Shear Angle Theory is usually used to take a transverse shear deformation of thick plate into consideration, which cannot be effectively considered the influence of transversal warping of cross-section with an increase of thickness. It might be the best way to represent the exact cross-sectional warping of the plate. The overall objective of this study is to develop a new formulation of plate including shear deformation and transversal warping, to perform extensive parametric studies comparing its results with those from Mindlin plate formulation, and to gain further insight into the influence of shear deformation and transversal warping of thick plate.

  • PDF