• Title/Summary/Keyword: cross-resistance

Search Result 1,282, Processing Time 0.026 seconds

Cross Resistance of Cypermethrin-and Methomyl-Resistance and Linkage Group Analysis on Cypermethrin Resistance in House Fly(Musca domestica L.) (Cypermethrin과 Methomyl 저항성 집파리의 교처저항성과 Cypermethrin 저항성에 대한 연관군 분석)

  • Yoo, Ju;Park, Chung-Gyoo;Lee, Si-Woo;Choi, Byeong-Ryeol
    • Korean journal of applied entomology
    • /
    • v.40 no.4
    • /
    • pp.337-344
    • /
    • 2001
  • The house fly (Musca domestica L.) strains were derived from the Yumenoshima III strain by selecting with cypermethrin and methomyl for 19 and 16 generations, respectively. The resulting strains, cypermethrin resistance strain (Cyp-R19) and methomyl resistance strain (Met-R16), showed high level of resistance by 12906 and 51 times, respectively, comparing with the susceptible SRS strain. The Cyp-R19 strain was resistant to synthetic pyrethroids such as deltamethrin, esfenvalerate, fenpropathrin, $\beta$-cyfluthrin, showing > 11000, 1231, 103, 292 times higher $LD_{50}$ values than the SRS strain, respectively. It was also resistant to 3 organophosphates and 2 carbamates such as fenitrothion, profenofos, pyridaphenthion, benfuracarb, methomyl, showing resistance ratios fo 51, 17, 49, 39 and 62 comparing to SRS strain. The Met-R16 strain was resistant to synthetic carbamate benfuracarb, showing 6 times higher $LD_{50}$ value than SRS strain. It was also resistant to 4 organophosphates such as acephate, fenitrothion, profenofos and pyridaphenthion, showing > 40, 103, 19, 60 times higher $LD_{50}$ value. It was also resistant to 5 pyrethroids and a pyrrole such as cypermethrin, deltamethrin, esfenvalerate, fenpropathrin, $\beta$-cyfluthrin and chlorfenapyr, showing 3030, 249, 4063, 34, 330 and 86 times higher $LD_{50}$ values than the SRS strain. Cyp-R14 strain which was selected for 14 generations by cypermethrin and developed 11014 times higher resistance to the SRS strain was used in the dominance and linkage group analysis. Cypermethrin resistance inheritance was incompletely dominant in house fly as judged by the reciprocal cross between the resistant and susceptible strains. The linkage group analysis for the major factors responsible for this resistance was carried out by the$ F_1$male-backcross method, using susceptible multi-chromosomal marker aabys strain. The major factors for cypermethrin resistance were located on the 1st, the 3rd and the 4th chromosomes, and the effect of the 3rd chromosome was most prominent.

  • PDF

Insecticide Resistance in Increasing Interest

  • Lee, Sung-Eun;Kim, Jang-Eok;Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.105-112
    • /
    • 2001
  • Insect pests can be controlled through direct application of insecticides. Insect control by residual protectants is relatively inexpensive and has an advantage of destroying all stages of infestations. The efficacy of control is largely determined by the concentration of insecticides to which the pest species is exposed. A reduction in the period of control in the field afforded by a specific level of a protectant indicates that resistance has developed. An increase in the level of protectant is required to maintain control, and the efficacy of currently used insecticides has been severely reduced by insecticide resistance in pest species. Development of resistance to particular insecticide varies with species because insecticide resistance is often correlated with increased levels of certain enzymes, which are cytochrome P450-dependent monooxygenases, glutathione S-transferases and esterases. Some sections of insecticide molecules can be modified by one or more of these primary enzymes. A reduction in the sensitivity of the action site of a xenobiotic also constitutes a mechanism of resistance. Acetylcholinesterase is a major target site for insecticide action, as are axonal sodium ion channels and ${\gamma}$-aminobutyric acid receptors. Development of reduced sensitivity of these target sites to insecticides usually occurs. This review not only may contribute to a better understanding of insecticide resistance, but also illustrates the gaps still present for a full biochemical understanding of the resistance.

  • PDF

Wave Resistance under the Influence of the Draft and Water-plane Section Form of the Ship (흘수(吃水)와 수선면형상(水線面形狀)의 변화(變化)에 따른 조파저항(造波抵抗))

  • I.C.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.16 no.2
    • /
    • pp.9-14
    • /
    • 1979
  • Havelock was considered the wave resistance of a post extending vertically downwards through the water from the surface, its section by a horizontal plane being the same at all depths and having its breath small compared with its length. This enables us to elucidate certain points of interest in ship resistance. However, the ship has not infinte draft. So, the problem which is investigated in detail in this paper is the wave resistance of a mathematical quadratic model in a uniform stream. The author wishes to study the effect of viriation of draft. The form of the water-plane is varied while keeping in length and the cross sectional area constant. As a numerical example, we calculated the wave resistance for mathematical quadratic ship models. The results are compared with a post having infinite depth. The results are as follows; The models with finer ends have smaller wave resistance up to $V/\sqrt{L}=1.1{\sim}1.2$ than its mate with blunter ends, but above this speed the models with blunter ends have less wave resistance. According to the decrease of draft, the wave resistance gap between the models with blunter ends the models with finer ends decrease at high speed. In this case of T/L=0.025, the models with finer ends have less wave resistance than the models with blunter ends at high speed.

  • PDF

Inheritance of Cyst Nematode Resistance in a New Genetic Source, Glycine max PI 494182

  • Arelli, Prakash R.;Wang, Dechun
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.177-180
    • /
    • 2008
  • Worldwide, cyst nematode(Heterodera glycines Ichinohe) is the most destructive pathogen of cultivated soybean. In the USA, current annual yield losses are estimated to be nearly a billion dollars. Crop losses are primarily reduced by the use of resistant cultivars. Nematode populations are variable and have adapted to reproduce on resistant cultivars over time because resistance primarily traces to two soybean accessions. It is important to use diverse resistance sources to develop new nematode resistant cultivars. Soybean PI 494182 is a recent introduction from Japan and found to be resistant to multiple nematode populations. It is yellow seeded and maturity group 0. We have determined inheritance of resistance in PI 494182 using $F_{2:3}$ families derived from cross PI 494182 X cv. Skylla. Skylla is a susceptible parent. Three nematode populations, races 1, 3, and 5, corresponding to HG types 2.5.7, 0, and 2.5.7 were used to bioassay 162 $F_{2:3}$ families in greenhouse experiments. Based on Chi-square tests, a two-gene model is proposed for resistance to race 1 and a three-gene model is proposed for conditioning resistance to both races 3 and 5. Correlation coefficient analysis indicated that some genes conditioning resistance to races 1, 3, and 5 are shared or closely linked with each other. These results will be useful to soybean breeders for developing soybean cultivars for broad resistance to nematodes.

  • PDF

Responses of Peach Blossom Blight and Brown Rot Fungus Monilinia fructicola to Benzimidazole and Diethofencarb in Korea

  • Lim, Tae-Heon;Kim, Jin-Ho;Cha, Byeong-Jin
    • The Plant Pathology Journal
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • The population shifts of Monilinia fructicola isolates which were resistant to the fungicide benzimidazoles were investigated in four regions of Korea from 1998 to 2000. The isolation frequency of benzimidazole-resistant isolates ranged from 18.8% to 29.6% in Chongdo and from $22.0\%$ to $26.8\%$ in Gyeongsan during the same period. However, the frequency of benzimidazoleresistant isolates was less than $4.0\%$ in Chochiwon and Youngduk during the same period. Benzimidazoleresistant isolates showed cross-resistance among benzimidazoles. On the other hand, none of the isolates showed cross-resistance to diethofencarb and carbendazim. Regardless of the year, the benzimidazole-resistant isolates of $EC_{50}$ higher than 500 $\mug%$ a.i./ml were isolated more frequently in mid and late season than in early season. In an orchard of Gyeongsan that had not been exposed to any fungicides for several years, the population of benzimidazole-resistant isolate had persisted without much fluctuation for three years. These results suggest that benzimidazole resistance of M. fructicola is becoming a problem in controlling brown rot and blossom blight of peach in regions like Chongdo and Gyeongsan.

A Study on the Performance Experiments of Lightweight Wall of Long-life Housing by Ceiling Infill System (천장 인필시스템에 따른 장수명주택 경량벽체의 성능실험에 관한 연구)

  • Seo, Dong-Goo;Lee, Jong-Ho;Kim, Eun-Young;Hwang, Eun-Kyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.247-248
    • /
    • 2018
  • In order to secure the variability of long-life housing, dry walls are used. The composite gypsum board panel is the most frequently used infill system for the wall, and it is an excellent construction method in terms of constructability and economic feasibility. However, there are also problems such as the destruction of Ondol pipes at the bottom floor and being unable to fix the light weight steel frame (M-bar) when a variable composite gypsum board panel is used. To solve such problems, a wall with a method of fixing only the top part without fixing the bottom floor is developed, but it is difficult to identify the durability of ceiling frame according to the tensile force of stud and the safety according to the Stiffness and impact resistance (soft body) of ceiling frame. Therefore, this study verified the effectiveness of infill system for the wall by conducting experiment on the stiffness and impact resistance of composite gypsum board panel according to the reinforcement of ceiling frame (wooden frame, double saw-toothed bracket, Cross M-bar). As a result, it was possible to secure the safety of wooden frame while the impact resistance and the Stiffness of double saw-toothed bracket and cross M-bar were not secured.

  • PDF

The effects of stacking sequence on the penetration-resistant behaviors of T800 carbon fiber composite plates under low-velocity impact loading

  • Ahmad, Furqan;Hong, Jung-Wuk;Choi, Heung Soap;Park, Soo-Jin;Park, Myung Kyun
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.107-115
    • /
    • 2015
  • Impact damages induced by a low-velocity impact load on carbon fiber reinforced polymer (CFRP) composite plates fabricated with various stacking sequences were studied experimentally. The impact responses of the CFRP composite plates were significantly affected by the laminate stacking sequences. Three types of specimens, specifically quasi-isotropic, unidirectional, and cross-ply, were tested by a constant impact carrying the same impact energy level. An impact load of 3.44 kg, corresponding to 23.62 J, was applied to the center of each plate supported at the boundaries. The unidirectional composite plate showed the worst impact resistance and broke completely into two parts; this was followed by the quasi-isotropic lay-up plate that was perforated by the impact. The cross-ply composite plate exhibited the best resistance to the low-velocity impact load; in this case, the impactor bounced back. Impact parameters such as the peak impact force and absorbed energy were evaluated and compared for the impact resistant characterization of the composites made by different stacking sequences.

Steel fibre reinforced concrete for elements failing in bending and in shear

  • Barros, Joaquim A.O.;Lourenco, Lucio A.P.;Soltanzadeh, Fatemeh;Taheri, Mahsa
    • Advances in concrete construction
    • /
    • v.1 no.1
    • /
    • pp.1-27
    • /
    • 2013
  • Discrete steel fibres can increase significantly the bending and the shear resistance of concrete structural elements when Steel Fibre Reinforced Concrete (SFRC) is designed in such a way that fibre reinforcing mechanisms are optimized. To assess the fibre reinforcement effectiveness in shallow structural elements failing in bending and in shear, experimental and numerical research were performed. Uniaxial compression and bending tests were executed to derive the constitutive laws of the developed SFRC. Using a cross-section layered model and the material constitutive laws, the deformational behaviour of structural elements failing in bending was predicted from the moment-curvature relationship of the representative cross sections. To evaluate the influence of the percentage of fibres on the shear resistance of shallow structures, three point bending tests with shallow beams were performed. The applicability of the formulation proposed by RILEM TC 162-TDF for the prediction of the shear resistance of SFRC elements was evaluated. Inverse analysis was adopted to determine indirectly the values of the fracture mode I parameters of the developed SFRC. With these values, and using a softening diagram for modelling the crack shear softening behaviour, the response of the SFRC beams failing in shear was predicted.

Surface erosion behavior of biopolymer-treated river sand

  • Kwon, Yeong-Man;Cho, Gye-Chun;Chung, Moon-Kyung;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.49-58
    • /
    • 2021
  • The resistance of soil to the tractive force of flowing water is one of the essential parameters for the stability of the soil when directly exposed to the movement of water such as in rivers and ocean beds. Biopolymers, which are new to sustainable geotechnical engineering practices, are known to enhance the mechanical properties of soil. This study addresses the surface erosion resistance of river-sand treated with several biopolymers that originated from micro-organisms, plants, and dairy products. We used a state-of-the-art erosion function apparatus with P-wave reflection monitoring. Experimental results have shown that biopolymers significantly improve the erosion resistance of soil surfaces. Specifically, the critical shear stress (i.e., the minimum shear stress needed to detach individual soil grains) of biopolymer-treated soils increased by 2 to 500 times. The erodibility coefficient (i.e., the rate of increase in erodibility as the shear stress increases) decreased following biopolymer treatment from 1 × 10-2 to 1 × 10-6 times compared to that of untreated river-sands. The scour prediction calculated using the SRICOS-EFA program has shown that a height of 14 m of an untreated surface is eroded during the ten years flow of the Nakdong River, while biopolymer treatment reduced this height to less than 2.5 m. The result of this study has demonstrated the possibility of cross-linked biopolymers for river-bed stabilization agents.

Physical Properties of the Silica-Reinforced Tire Tread Compounds by the Increased Amount of Vulcanization Agents (가교제 증량이 트레드용 실리카 컴파운드의 물성에 미치는 영향)

  • Seo, Byeongho;Kim, Ki-Hyun;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.201-208
    • /
    • 2013
  • In this study, effect of different amounts of sulfur and vulcanization accelerators in the acrylonitrile styrene-butadiene rubber (AN-SBR)/silica compounds on the properties of tire tread compound were studied. As a result, cure rate and degree of cross-linking of the compounds were increased due to enhanced cross-linking reactivity by the increased amounts of sulfur and vulcanization accelerators. Also, abrasion resistance and the mechanical properties such as hardness and modulus of the compounds were improved by enhanced degree of cross-linking of the compounds. For the dynamic properties, tan ${\delta}$ value at $0^{\circ}C$ was increased due to the increase of glass transition temperature ($T_g$) by enhanced degree of cross-linking of the compound, and tan ${\delta}$ value at $60^{\circ}C$ was decreased. Initial cure time ($t_1$) showed the linear relationship with tan ${\delta}$ value at $60^{\circ}C$. This result is attributed that reduced initial cure time ($t_1$) of compounds by applying increased amount of curatives can form cross-linking in early stage of vulcanization that may suppress development of filler network. This result is verified by observation on the surface of annealed compounds using AFM (atomic force microscopy). Consequently, decreased initial cure time is considered a very important parameter to reduce tan ${\delta}$ at $60^{\circ}C$ through reduced re-agglomeration of silica particles.