• Title/Summary/Keyword: cross-linking agent

Search Result 136, Processing Time 0.032 seconds

Organic-inorganic Hybrid Materials for Spin Coating Hardmask (스핀코팅 하드마스크용 유-무기 하이브리드 소재에 관한 연구)

  • Yu, Je Jeong;Hwang, Seok-Ho;Kim, Sang Bum
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.230-234
    • /
    • 2011
  • In this work, the primary material for a single layered hardmask which can afford a spin-on process was prepared by the minture of organic and inorganic sources. The preparation of hybrid polymer was attempted by esterification from silanol terminated siloxane compounds and acetonide-2,2-bis(methoxy)propionic acid. The optical, thermal and morphological properties of the test hardmask film was examined in terms of cross-linking agent and additives. In addition, the etch rate of hardmask film and photo resist layer were compared. The hybrid polymer prepared from organic and inorganic materials was found to be useful for hardmask film to form the nano-patterns.

Effect of Additives on the Physicochemical Properties of Acetaminophen Liquid Suppository (아세트아미노펜 액상좌제의 물리화학적 특성에 미치는 첨가제의 영향)

  • Choi, Han-Gon;Jung, Jae-Hee;Ryu, Jei-Man;Lee, Mi-Kyung;Kim, In-Sook;Lee, Beom-Jin;Kim, Chong-Kook
    • YAKHAK HOEJI
    • /
    • v.42 no.3
    • /
    • pp.290-295
    • /
    • 1998
  • To optimize the formulation of acetaminophen liquid suppository, the effect of additives on the physicochemical properties of liquid suppository base was investigated. The physi cochemical properties of P 407/P 188 (15/15%) (abbreviated in 15/15) and P 407/P l88 (15/20%) (abbreviated in 15/20) were measured after the addition of following additives; 2.5% acetaminophen as an active ingredient, vehicle components (5% ethanol, 5% propylene glycol, 5% glycerin), preservatives (0.1% sodium benzoate, 0,1% methylparahydroxybenzoate, 0.1% propylparahydroxybenzoate) and 1% of sodium chloride as an ionic strength controlling agent. Poloxamer gel was prepared with three different buffer solutions (pH 1.2, 4.0 and 6.8) and the physicochemical properties, gelation temperature, gel strength and bioadhesive force, were determined. In the results, the effect of additives on the physicochemical properties was dependent on their bonding capacities including hydrogen bonding and cross-linking bonding. Because the hydrogen-bonding capacities of acetaminophen, ethanol and propylene glycol were smaller than that of poloxamer, the binding force of poloxamer gel became weak by their putting in between poloxamer gel. Therefore, the gelation temperature (15/15, $35.7^{\circ}C$ vs 37.0, 39.4 $38.2^{\circ}C$; 15/20, $29.2^{\circ}C$ vs 31.2, 32.0, $30.3^{\circ}C$) increased, and gel strength (15/15, 4.03 see vs 2.72, 2.08, 3.12sec; 15/20, 300g vs 50, 50, 200g) and bioadhesive force (15/15, $6.8{\times}10^2\;dyne/cm^2$ vs 3.2, 6.0, $6.0{\times}10^2\;dyne/cm^2$; 15/20, $97.3{\times}10^2\;dyne/cm^2$ vs 11.1, 89.5, $92.0{\times}10^2\;dyne/cm^2$) decreased. Furthermore, the binding force of poloxamer gel became strong due to the hydrogen-bonding capacities of glycerin and the cross-liking bonding of sodium salt. Then, the gelation temperature (15/15, 35.0, $32.1^{\circ}C$; 15/20, 26.0, $21.0^{\circ}C$) decreased, and gel strength (15/15, 6.51 see, 300g; 15/20, 500, 650g) and bioadhesive force (15/15, 7.2, $81.6{\times}10^2\;dyne/cm^2$; 15/20, 112.3, $309.2{\times}10^2\;dyne/cm^2$) increased. The effect of pH on the physicochemical properties of poloxamer gel was dependent on the ingredients with which the buffer solutions were prepared. Poloxamer gels prepared with pH 1.2 and 4.0 buffer solutions had the increasing gelation temperature (15/15, 37.5, $38.1^{\circ}C$; 15/20, 33.1, $34.0^{\circ}C$) and the decreasing gel strength (15/15, 2.98, 3.81sec; 15/20, 200, 200g) and bioadhesive force (15/15, $7.0{\times}10^2dyne/cm^2$; 15/20, $74.0{\sim}88.1{\times}10^2dyne/cm^2$) owing to HCl. Poloxamer gel prepared with pH 6.8 buffer solutions had the decreasing gelation temperature (15/15, $27.2^{\circ}C$; 15/20, $22.3^{\circ}C$) and the increasing gel strength (15/15, 400g; 15/20, 550g) and bioadhesive force (15/15, $207.0{\times}10^2dyne/cm^2$; 15/20, $215.0{\times}10^2dyne/cm^2$) due to the cross-linking bonding of $NaH_2PO_4\;and\;K_2HPO_4$.

  • PDF

Influence of Artificial Tear Containing Carboxymethyl Cellulose Component on Physical Properties of Hydrogel Contact lens (카르복시메칠 셀룰로오스 성분이 포함된 인공누액이 하이드로젤 콘택트렌즈의 물성에 미치는 영향)

  • Cho, Seon-Ahr;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.457-463
    • /
    • 2013
  • To determine the impact of artificial tears which include carboxymethyl cellulose on a hydrogel contact lenses. Methods: A contact lenses made of the cross-linking agent, EGDMA (ethylene glycol dimethacrylate) and HEMA (2-hydroxyethyl methacrylate) and with added NVP (n-vinyl-2-pyrrolidone) and MMA (methyl methacrylate) was evaluated for water content, refractive index, spectral transmittance and contact angle of produced contact lens. Results: The physical properties of the sampled copolymerized polymers showed that water content, refractive index, visible ray transmittance and contact angle were in the range of 26.61%~48.58%, 1.422~1.455, 80.8%~91.4% and $33.93^{\circ}{\sim}65.70^{\circ}$, respectively. In addition, after soaking with artificial tears, the water content, refractive index and contact angle were in the range of 24.46%~48.25%, 1.422~1.457, 77.0%~91.0% and $37.25^{\circ}{\sim}77.33^{\circ}$, respectively. The changes of the physical property depending on hydration time and showed an increase of refractive index and contact angle, decrease of water content and visible ray transmittance. Conclusions: Artificial tears which include carboxymethyl cellulose sodium which is used as a wetting agent influenced water content, refractive index, contact angle and spectral transmittance of a hydrogel contact lenses.

Foaming Properties and Flame Retardancy of the Foams Based on NBR/GTR Compounds (니트릴고무/타이어고무분말(GTR)를 이용한 발포체의 발포 및 난연 특성에 관한 연구)

  • Moon, Sung-Chul;Jo, Byung-Wook;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.159-169
    • /
    • 2002
  • The improvement of flame retardancy of the foams based on NBR/GTR compounds was conducted by formulating various materials i.e. NBR, GTR, inorganic and phosphorus containing flame retardants, foaming agent, cross-linking agent and activator. The foaming properties, morphology, smoke density and flame retardancy of the specimens were investigated using SEM, LOI tester, smoke density control system and cone calorimeter. The phosphorus containing flame retardant reduces heat release rate, increases the limiting oxygen index and a char formation. The inorganic flame retardant increases the limiting oxygen index and reduces heat release rate with an increased CO yield by char formation, and smoke suppressing effect. The formed char seemed to intercept the oxygen transport and heat transfer into the core area. When the composition ratios of the compounds of NBR/GTR were $100{\sim}80/0{\sim}20 wt.%$, and the ratios of the rubbers/flame retardants were $1/1.55{\sim}3.60 wt.%$, we could developed foams with low heat release rate, high limiting oxygen index($28.0{\sim}39.3$), closed or semi-closed cell of uniformity and reasonable expandability($225{\sim}250 %$).

Design and Properties of Laminating Waterborne PSA for Eco-friendly Flexible Food Packaging (식품연포장용 라미네이트 수성 감압점착제의 친환경적 적용에 대한 연구)

  • Lee, Jin-Kyoung;Shim, Myoung-Sik;Chin, In-Joo
    • Journal of Adhesion and Interface
    • /
    • v.17 no.2
    • /
    • pp.49-55
    • /
    • 2016
  • In this study, we designed an environment friendly, water-based adhesive using the acrylic emulsion method as a replacement for solvent-based adhesives, which are most commonly used in layered laminates for flexible food packaging. We designed adhesives with different combinations of anionic, non-ionic, and phosphoric ester surfactants, and with different concentrations of chain transfer agent (CTA). We also examined the effect of the degree of cross-linking by synthesizing and comparing 8 test group adhesives with different types of functional monomers. Additionally, we synthesized 2 other test group pressure-sensitive adhesives (PSA) using styrene/alpha-methyl styrene/acrylic acid (SAA) semipolymer dispersing agents (with molecular weights of 13,000 g/mol and 8,600 g/mol, respectively) to replace the conventional surfactants. We evaluated whether the 10 test group pressure-sensitive adhesives met the basic physical property criteria required for flexible food packaging by carrying out a physical analysis of their glass transition temperature (Tg), particle size, adhesion, and molecular weight. In our test, 2 test group adhesives manufactured with the combination of anionic and non-ionic surfactants, CTA concentration of 0.2%, and functional monomers of hydroxyethyl acrylate (HEA) and glycidyl methacrylate (GMA) demonstrated molecular weight and flexibility suitable for flexible packaging, with low adhesiveness and small particle size.

Effect of Chemical Foaming Process on the Cellular Structure Development and Correlation with the Mechanical and Physical Property of PBAT (화학적 발포 공정이 PBAT 발포 셀 구조 발달에 미치는 영향과 기계적, 물리적 특성과의 상관관계 연구)

  • Yeong ho Ji;Tae Hyeong Park;Ji Eun Choo;Sung Wook Hwang
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.1
    • /
    • pp.63-72
    • /
    • 2024
  • Poly (butylene adipate-co-terephthalate) (PBAT) is one of the representative biodegradable polymers with high ductility and processability to replace petroleum-based polymers. Many investigations have been conducted to broaden the applications of PBAT in a variety of industries, including the food packaging, agricultural mulching film, and logistics and distribution fields. Foaming process is widely known technique to generate the cell structure within the polymer matrix, offering the insulation and light weight properties. However, there was no commercially feasible foam product based on biodegradable polymers, especially PBAT, and maintaining a proper melt viscosity of the polymer would be a key parameter for the foaming process. In this study, chemical foaming agent and cross-linking agent were introduced to PBAT, and a compression molding process was applied to prepare a foam sheet. The correlation between cell morphological structures and mechanical and physical properties was evaluated. It was found that PBAT with foam structures effectively reduced the density and thermal conductivity, allowing them to be suitable for applications such as insulation and lightweight packaging or cushion materials.

Development of Porous Cellulose Hydrogel for Enhanced Transdermal Delivery of Liquiritin and Liquiritigenin as Licorice Flavonoids (감초 플라보노이드 Liquiritin 및 Liquiritigenin을 담지한 피부전달체인 셀룰로오스 다공성 하이드로젤 제형 개발)

  • Kim, Su Ji;Kwon, Soon Sik;Yu, Eun Ryeong;Park, Soo Nam
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.676-681
    • /
    • 2014
  • Licorice, widely used as a herbal medicine, has flavonoids such as liquiritin and its aglycone, liquiritigenin that show anti-oxidant and anti-inflammatory properties. Licorice flavonoid-loaded cellulose hydrogels were prepared as carriers for skin drug delivery, and their properties were investigated. The porous cellulose hydrogel was made by reacting cellulose with epichlorohydrin as a cross-linking agent in NaOH/urea(1~10%) solutions. Through studies on the rheological properties and water uptake of the hydrogel, a NaOH/urea(6%) solution was established as being optimum for the synthesis of the cellulose hydrogel containing liquiritin and liquiritigenin. Scanning electron microscopy (SEM) observations of a cross-section of the prepared hydrogel indicated its porosity. In particular, in skin permeation experiments using a Franz diffusion cell, hydrogel containing the licorice flavonoids showed remarkable transdermal permeation compared to the control group. These results indicate that porous cellulose hydrogel is a potential drug delivery system to enhance the skin permeation of licorice flavonoids.

Effect of Cardanol Content on the Antibacterial Films Derived from Alginate-PVA Blended Matrix (알지네이트-폴리비닐알콜 블랜드 항균 필름 제조를 위한 카다놀 함량의 영향)

  • Ahn, Hee Ju;Kang, Kyung Soo;Song, Yun Ha;Lee, Da Hae;Kim, Mun Ho;Lee, Jae Kyoung;Woo, Hee Chul
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • Petroleum-based plastics are used for various purposes and pose a significant threat to the earth's environment and ecosystem. Many efforts have been taken globally in different areas to find alternatives. As part of these efforts, this study manufactured alginate-based polyvinyl alcohol (PVA) blended films by casting from an aqueous solution prepared by mixing 10 wt% petroleum-based PVA with biodegradable, marine biomass-derived alginate. Glutaraldehyde was used as a cross-linking agent, and cardanol, an alkyl phenol-based bio-oil extracted from cashew nut shell, was added in the range of 0.1 to 2.0 wt% to grant antibacterial activity to the films. FTIR and TGA were performed to characterize the manufactured blended films, and the tensile strength, degree of swelling, and antibacterial activity were measured. Results obtained from the FTIR, TGA, and tensile strength test showed that alginate, the main component, was well distributed in the PVA by forming a matrix phase. The brittleness of alginate, a known weakness as a single component, and the low thermal durability of PVA were improved by cross-linking and hydrogen bonding of the functional groups between alginate and PVA. Addition of cardanol to the alginate-based PVA blend significantly improved the antibacterial activity against S. aureus and E. coli. The antibacterial performance was excellent with a death rate of 98% or higher for S. aureus and about 70% for E. coli at a contact time of 60 minutes. The optimal antibacterial activity of the alginate-PVA blended films was found with a cardanol content range between 0.1 to 0.5 wt%. These results show that cardanol-containing alginate-PVA blended films are suitable for use as various antibacterial materials, including as food packaging.

Debittering of Citrus Products Using ${\beta}-Cyclodextrin$ Polymer and Ultrafiltration Process (${\beta}-Cyclodextrin$ 중합체와 한외여과 공정을 이용한 감귤류의 쓴맛 성분 제거)

  • Woo, Gun-Jo;Ha, Seung-Mi
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.302-308
    • /
    • 1997
  • ${\beta}-Cyclodextrin\;({\beta}-CD)$ polymers were prepared using epichlorohydrin as a cross linking agent. The polymers were separated into ${\beta}-CD$ soluble polymer $({\beta}-CD\;SP)$ and ${\beta}-CD$ insoluble polymer $({\beta}-CD\;ISP)$ on a 10,000 molecular weight cut-off membrane (YM 10). Optimum separation conditions in the YM 10 were: transmembrane pressure 51.7 kPa, separation temperature $35^{\circ}C$, and volume concentration ratio 10. The flux was $0.025\;mL/cm^{2}/min$ under the optimum conditions. Gel permeation chromatography indicated that ${\beta}-CD\;SP\;and\;{\beta}-CD\;ISP$ had a degree of polymerization of $2{\sim}8$ and over 10, respectively. The formation of an inclusion complex with hydrophobic compounds such as 4-dimethylaminoazobenzene, methyl red, and naringin was compared among ${\beta}-CD,\;{\beta}-CD\;SP\;and\;{\beta}-CD\;ISP$. The molar absorptivity for the two chromatic compounds was increased and the absorption peak was shifted in the presence of ${\beta}-CD$ polymers. Naringin, the principal flavonoid bitter tasting component of citrus fruit, had a low water solubility. The solubility of naringin was increased through the formation of an inclusion complex with ${\beta}-CD$ polymers. There was no significant difference in the formation of an inclusion complex between ${\beta}-CD\;SP\;and\;{\beta}-CD\;ISP$. Reduction of the bitter components from citrus products was shown to be possible when employing ${\beta}-CD\;SP$, while the usage of ${\beta}-CD$ monomer has been limited due to the low water solubility.

  • PDF

Development of Alginate-Celite Immobilization Technique for the Improvement of Ethanol Productivity (에탄올 생산성 향상을 위한 Alginate-Celite 고정화 방법의 개발)

  • 김승욱;김은영홍영기
    • KSBB Journal
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 1996
  • The optimal initial pH for the ethanol production by Saccharomyces K35 was found to be 5.0, and about 80% of yield was obtained when 200g/$\ell$ of glucose was used as a substrate, which showed sugar tolerant. As the additives and cross-linking agent, the addition of 1.67%(w/v) Celite R-634 together with 0.33%(v/v) of glutaraldehyde(ACG bead) resulted in better stability, ethanol productivity and cell viability than Ca-alginate bead. Also, ACG bead seemed to be more resistant to phosphate ion than Ca-alginate bead, considering outgrowing cell concentration in the media. Scanning electron microscopic observation depicted that the surface of ACG bead was almost similar to the original state but not for Ca-alginate bead. When repealpd-batch culture was performed with Ca-alginate bead for 60 days in a 500m1 Erlenmeyer flask, ethanol and cell concentration were maintained about 138g/$\ell$-gel and 29~30g/$\ell$-gel, respectively, up to 40 days(7th run number), and then both were rapidly decreased. In the case of ACG bead, ethanol and cell concentration were maintained about 130~150g/$\ell$-gel and 32~35g/$\ell$-gel, respectively, up to 60days(10th run number). Cell viability was maintained about 70%, and outgrowing cell concentration was below 5.8% of total cell concentration.

  • PDF