• Title/Summary/Keyword: cross sectional shape

Search Result 477, Processing Time 0.03 seconds

A Study on the Explosion Relief Venting in the Gas Explosion (실내 가스 폭발시 폭발압력 방출에 관한 연구)

  • Oh, Kyu-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.71-77
    • /
    • 2005
  • This study aims to find the safe vent area to prevent a destruction of building by gas explosion in a building. Explosion vessel which used in this experiment is 1/5 scale down model of simple livingroom and its dimension is 100cm in length 60cm in width and 45cm in height. Liquified petroleum gas(LPG) was injected to the vessel to the concentration of 4.5vol%, and injection rate were varied in 1L/min or 4L/min. Gas mixture was ignited by the 10kV electric spark. For analysis the characteristics of vented explosion pressure according to the vent size and vent shape, its size and shape were varied. From the experiment, it was found that explosion pressure in the vented explosion :in affected by the gas injection rate, vent area and vent shape. And the vent area to volume ratio(S/V) to prevent the building destruction by explosion pressure, it is recommended that the design of vent area happened by the explosion should be above 1/500cm in S/V. And if the vent area has complicate structure in same area, vented explosion pressure will be higher than a single vent, and possibility of building destruction will increase. Therefore to effectively vent the explosion pressure for protect a building and residents from the gas explosion hazards, the same vent area should have a singular and constant shape in the cross-sectional area of the vessel.

Study of Flexible Forming Process Involving the Use of Sectional Flexible Die for Sheet Material (분할가변금형을 이용한 박판의 가변성형공정 연구)

  • Heo, Seong-Chan;Ku, Tae-Wan;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.299-305
    • /
    • 2010
  • In general, the flexible forming die that has been used in the flexible forming process has the identical punch size; hence, its flexibility is relatively low because the range of allowable curvature radii is limited due to the uniform punch tip radius. Hence, a conceptual design of a sectional flexible die is presented for enhancing the flexibility of the forming process. Two punches of different sizes are used to configure the arbitrary forming surface. For a forming region with a relatively large curvature radius, a large punch array block is used; on the other hand, for the forming regions with small curvature radii, a small punch block is used. The cross-sectional profiles are compared with the target shape for evaluating the effectiveness of the process. Consequently, it is confirmed that the sectional flexible die can be used along with a combination of punch blocks of different sizes for manufacturing objective surfaces of complex shapes.

Numerical Analysis of Concentration Polarization for Spacer Configuration in Plate Type Membrane Module (평판형 분리막 모듈 내 스페이서 형태에 따른 농도분극에 관한 수치해석)

  • Shin, Ho Chul;Chung, Kun Yong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.703-710
    • /
    • 2011
  • As the spacer in the membrane module provide the channel space to flow the feed solution smoothly and induce the flow turbulence, it could help to reduce both the concentration polarization and to take the long-term operation of membrane modules with high permeate flux by mixing the accumulated contaminants on the membrane surface into the bulk solution. In this study, the concentration distribution in membrane module with respect to the spacers which have the cross-sectional shapes of circle, cross, diamond and hexagon, the angles of spacer configuration, solute rejection and permeate flux were interpreted and optimized numerically using the "COMSOL Multiphysics" software. The concentration on the membrane surface was kept the lowest level for the cross-shape among the above four types of spacers. Also the 30 degree spacer configuration was showed as the most efficient case. The concentrations on the membrane surface at the module outlet for without spacer and the cross shape with the 30 degree spacer configuration were 2.09 and 1.29 times higher than those at inlet, respectively. The reduction effect of concentration polarization increased rapidly as the permeate flux increased.

A Study on LIT Girder Performance Improvement (LIT 거더 성능 개선에 대한 연구)

  • Kim, Sung;Park, Sungjin
    • Journal of Urban Science
    • /
    • v.11 no.2
    • /
    • pp.19-24
    • /
    • 2022
  • Conventional RC beams for crossing small and medium-sized rivers do not have a cross-sectional area, so the floating debris is accumulated and disasters such as damage to bridges occur. To improve this, the PSC method was invented. However, this also had problems such as transverse curvature, increase in dead weight due to cross-sectional shape, and negative moment generated during serialization, so it was necessary to develop a new type of girder. Therefore, it was intended to propose a LIT(Leton Interaction Thrust) girder bridge that is safer and has better performance than the conventional PSC girder with improved section efficiency. Unlike existing girder bridges, the LIT girder has the feature that the change in the strands of the entire girder occurs only in the vertical direction when the first tension is applied because the tendon arrangement is symmetrical by applying the raised portion. In addition, slab continuation generates a secondary moment that is advantageous to the continuous point, effectively controlling the negative moment and preventing the corrosion of the tendon. The dimensions of the cross section were determined, and the arrangement of the strands was designed to conduct structural analysis and detailed analysis. As a result of the structural analysis, the stress of the girder showed results within the allowable compressive stress, and the deflection showed the result within the allowable deflection. showed results. In addition, a detailed analysis was performed to examine the stress distribution around the girder body and the anchorage area and the stress distribution of the embossed portion, and as a result, the stress of the girder body due to the tension force showed a stable level.

A Numerical Study on the Effect of the Cylinder Shape Modification on the Forced Convection Around a Circular Cylinder (실린더 형상 변화가 실린더 주위 강제대류에 미치는 영향에 관한 수치적 연구)

  • Kim, Min-Ho;Ha, Man-Yeong;Yoon, Hyun-Sik;Lee, Jin-Wook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.10
    • /
    • pp.670-677
    • /
    • 2011
  • Direct numerical simulation are performed in order to investigate the effect of the circular cylinder shape on the forced convection around a circular cylinder at the Reynolds number of 300 and Prandtl number of 0.71. Three-dimensional characteristics of fluid flow and heat transfer around the smooth, wavy and torsional cylinders are investigated. A wavy cylinder has the sinusoidal variation in the cross sectional area along the spanwise direction with the wave length of ${\pi}/3$ and wavy amplitude of 0.1. A torsional cylinder has the twisted elliptic cross section with a torsional period of ${\pi}/2$ and an axis ratio of 1.35 corresponding to the major axis of 1.15 and the minor axis of 0.85. The value of time-and surface-averaged drag coefficient for the smooth cylinder is similar to that for the wavy cylinder, but larger than that for the torsional cylinder. The time and surface-averaged lift coefficient for the smooth cylinder is larger than that for the wavy and torsional cylinders. The time-averaged local heat transfer rate for the wavy and torsional cylinders shows different distribution along the circumferential direction, compared to that for the smooth cylinder because of the shape change in the spanwise direction for the cases of the wavy and torsional cylinders.

Optimal design of pitched roof frames with tapered members using ECBO algorithm

  • Kaveh, Ali;Mahdavi, Vahid Reza;Kamalinejad, Mohammad
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.643-652
    • /
    • 2017
  • Pitched roof frames are widely used in construction of the industrial buildings, gyms, schools and colleges, fire stations, storages, hangars and many other low rise structures. The weight and shape of the gable frames with tapered members, as a familiar group of the pitched roof frames, are highly dependent on the properties of the member cross-sectional. In this work Enhanced Colliding Bodies Optimization (ECBO) is utilized for optimal design of three gable frames with tapered members. In order to optimize the frames, the design is performed using the AISC specifications for stress, displacement and stability constraints. The design constraints and weight of the gable frames are computed from the cross-section of members. These optimum weights are obtained using aforementioned optimization algorithms considering the cross-sections of the members and design constraints as optimization variables and constraints, respectively. A comparative study of the PSO and CBO with ECBO is also performed to illustrate the importance of the enhancement of the utilized optimization algorithm.

X-ray grayscale lithography for sub-micron lines with cross sectional hemisphere for Bio-MEMS application (엑스선 그레이 스케일 리소그래피를 활용한 반원형 단면의 서브 마이크로 선 패턴의 바이오멤스 플랫폼 응용)

  • Kim, Kanghyun;Kim, Jong Hyun;Nam, Hyoryung;Kim, Suhyeon;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.170-174
    • /
    • 2021
  • As the rising attention to the medical and healthcare issue, Bio-MEMS (Micro electro mechanical systems) platform such as bio sensor, cell culture system, and microfluidics device has been studied extensively. Bio-MEMS platform mostly has high resolution structure made by biocompatible material such as polydimethylsiloxane (PDMS). In addition, three dimension structure has been applied to the bio-MEMS. Lithography can be used to fabricate complex structure by multiple process, however, non-rectangular cross section can be implemented by introducing optical apparatus to lithography technic. X-ray lithography can be used even for sub-micron scale. Here in, we demonstrated lines with round shape cross section using the tilted gold absorber which was deposited on the oblique structure as the X-ray mask. This structure was used as a mold for PDMS. Molded PDMS was applied to the cell culture platform. Moreover, molded PDMS was bonded to flat PDMS to utilize to the sub-micro channel. This work has potential to the large area bio-MEMS.

EFFECT OF CANAL TAPERING IN TEETH OF VARIOUS APICAL SIZE & CROSS-SECTIONAL CONFIGURATION ON MICROLEAKAGE (다양한 치근단공 크기와 근관단면의 형태를 가지는 치아에서 taper의 정도가 미세누출에 미치는 영향)

  • Kim, Jung-Hee;Lee, Kyung-Ha;Lee, Se-Joon;Yu, Mi-Kyung;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.2
    • /
    • pp.95-101
    • /
    • 2005
  • The aim of this study was to evaluate the microleakage of teeth according to root canal preparation with & without apical enlargement in various size of apical foramen. 60 extracted one canal roots were cross-cutted at 5 mm from root apex and divided into two groups according to their apical foramen size of large (L) and small (S). Each group was subdivided into two groups accordance with their cross-sectional configuration at 5 mm from apex, round (R) and ovoid (O); SR Group, SO Group LR Group, LO Group. Each group was shaped in .02 taper by Quantec series Nickel-Titanium (NiTi) rotary file, obturated by lateral condensation method. Leakage was measured using a fluid transport model under 40 $cmH_2O$ pressure. After the leakage test, blocks which had showed the leakage retreated with .04 taper and ,06 taper and evaluated the degree of fluid filtration in each group. The data was analysed statistically using chi-square test and fisher's exact test. The results obtained were as follows : 1. Significant difference in leakage was found in groups which had different apical foramen size in .02 taper instrumentation (p < 0.05), but not in .04 taper instrumentation (p > 0.05) 2. The difference in microleakage according to the shape of canal was not evident at 5 mm from apex (p > 0.05). 3. There was correlation between .02 taper instrumentation and .04 taper instrumentation in LR group, LO group (p < 0.05).

Prediction of Stacking Angles of Fiber-reinforced Composite Materials Using Deep Learning Based on Convolutional Neural Networks (합성곱 신경망 기반의 딥러닝을 이용한 섬유 강화 복합재료의 적층 각도 예측)

  • Hyunsoo Hong;Wonki Kim;Do Yoon Jeon;Kwanho Lee;Seong Su Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.48-52
    • /
    • 2023
  • Fiber-reinforced composites have anisotropic material properties, so the mechanical properties of composite structures can vary depending on the stacking sequence. Therefore, it is essential to design the proper stacking sequence of composite structures according to the functional requirements. However, depending on the manufacturing condition or the shape of the structure, there are many cases where the designed stacking angle is out of range, which can affect structural performance. Accordingly, it is important to analyze the stacking angle in order to confirm that the composite structure is correctly fabricated as designed. In this study, the stacking angle was predicted from real cross-sectional images of fiber-reinforced composites using convolutional neural network (CNN)-based deep learning. Carbon fiber-reinforced composite specimens with several stacking angles were fabricated and their cross-sections were photographed on a micro-scale using an optical microscope. The training was performed for a CNN-based deep learning model using the cross-sectional image data of the composite specimens. As a result, the stacking angle can be predicted from the actual cross-sectional image of the fiber-reinforced composite with high accuracy.

The Relevances of the Ease and the Appearance by Changing the Sleeve Cap Height Using Virtual Garment System (가상봉제에 의한 소매산 높이의 변화가 봉합여유량 및 외관에 미치는 영향)

  • Han, Mi-Ran;Kim, Yeo-Sook
    • The Korean Journal of Community Living Science
    • /
    • v.23 no.2
    • /
    • pp.189-198
    • /
    • 2012
  • This study aim was to understand the effects of the change of the sleeve cap height on the sleeve cap line and the sleeve appearance by making nine different sleeve cap height patterns. When a subject sews the virtual and real garments with this, it provides data base through which she can make the suitable sleeve by conducting a comparative analysis of the appearance and cross-sectional diagram and grasping the relation between the sleeve cap line ease and the shape of the sleeve. As a result of the analysis of the image of 3D virtual garment, the shape of the armscye and the position of the bust line and sleeve baseline, the sleeve cap height and the sewing ease of the sleeve cap line affect on the shape of the sleeve and the armscye. Although the real garment is slightly different from the virtual garment they have shown similar tendency. Therefore, if the 3D virtual clothing system is used appropriately, it is possible to expect various study results in the apparel field without making real garments.