• Title/Summary/Keyword: cross sectional shape

Search Result 477, Processing Time 0.031 seconds

A study on cross sectional characteristics and available area for using the lower space in TBM road tunnels (TBM 도로터널의 단면특성 및 하부공간 활용을 위한 유효면적 검토)

  • Kim, Hyun-Soo;Kim, Hong-Moon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.2
    • /
    • pp.141-157
    • /
    • 2012
  • For the application TBM tunneling method, Both tunnel design standard and case study designed & constructed in domestic and foreign have been conducted. According to the study, the number of lane and inner shape (single or duplex) vary depending on the volume of traffic. Also extra space located in the top and bottom of tunnel is used for a multipurpose such as ventilation, disaster prevention, maintenance and administration. To find area ratio according to the components of road TBM tunnel, a standard section was considered as a two-lane road. Then, the analysis of area ratio of this section which consists of components for clearance, extra space in upper and lower tunnel was carried on two widths of shoulder. In addition, after a structural analysis, a thickness requirement of lower slab which is essential for road tunnel was derived on a few supporting types. Through correlation analysis, the ranges of available cross-sectional area between slab thickness and lower extra space of the tunnel was presented.

Prediction Model of the Exit Cross Sectional Shape of Workpiece in Round-Oval-Round Pass Rolling

  • Lee, Youngseog;Kim, Byung-Min;Kim, Dong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.785-798
    • /
    • 2002
  • A reliable analytic model that predicts the surface profile of the exit cross section of workpiece in round-oval (or oval-round) pass sequence is established. The presented model does not require any plasticity theory but needs the only geometric information on workpiece and roll groove. Formulation is based on the linear interpolation of the radius of curvature of an incoming workpiece and that of roll groove in the roll axis direction when the maximum spread of workpiece is known beforehand. The validity of the analytic model is examined by hot rod rolling experiment with the roll gap, specimen size, design parameter of oval groove and steel grade changed. Results revealed that the cross sectional shapes predicted by the model were in good agreement with those obtained experimentally. We found that the analytic model not only has simplicity and accuracy for practical usage but also saves a large amount of computational time in comparison with finite element method.

Feasibility Study of Laser Cladding for Co-based Coating on SCM440 and GC250 (Co-base 분말을 적용한 SCM440과 GC250의 레이저 클래딩 가공성 평가)

  • Choi, Byungjoo;Lee, Moon G.;Hong, Minsung;Ahn, Byungmin;Jung, Do-Hyun;Lee, Kwangjae;Lee, Chunggeun;Jeon, Yongho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.337-343
    • /
    • 2017
  • The laser cladding process on structural steel (SCM440) and gray cast iron (GC250) substrates with Co-based powder (Stellite 12) was studied. A diode laser (2 kW) was used as a heat source, and the powder was supplied by a disc rotary powder feeder. The relationship between the laser cladding process and the cross-sectional analysis of coating was examined based on coating shape and microstructure. Additionally, the microhardness was measured to confirm the mechanical property improvements. As a result, proper laser cladding conditions were selected through this study and verified by cross-sectional analysis. In addition, the evaluation process for laser cladding feasibility was conducted on the selected materials.

Development of a Design System for a Cable Tray (케이블 트레이 설계시스템 개발)

  • Choi, Du-Soon;Choi, WooSeok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.89-96
    • /
    • 2017
  • A cable tray is a structure made of metal or a non-combustible material that supports cables in the electrical wiring of buildings. Cable trays should be developed to meet the various requirements of the construction site. In this study, a design system was developed to calculate the maximum support load and the maximum deflection according to the cross-sectional shape of the cable tray. The cross-sections of cable trays were modeled by combining linear and arc elements, and cross-sectional characteristics such as the 2nd moment of area were calculated. The distributed load and the concentrated load were applied to the cable tray using the Euler beam theory, and then the deflection profiles and maximum stress were calculated. To verify the developed system, deflection distributions and maximum stresses for two types of cable trays were calculated and compared. The maximum deflection and maximum stress errors calculated from the developed system were found to be less than 4% compared with numerical analysis results.

Tightness Evaluation of Smart Sportswear Using 3D Virtual Clothing (3D 가상착의를 이용한 스마트 스포츠웨어의 밀착성 평가)

  • Soyoung Kim;Heeran Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.1
    • /
    • pp.123-136
    • /
    • 2023
  • To develop smart sportswear capable of measuring biometric data, we created a close-fitting pattern using two- and three-dimensional (2D and 3D, respectively) methods. After 3D virtual fitting, the tightness of each pattern was evaluated using image processing of contact points, mesh deviation, and cross-sectional shapes. In contact-point analysis, the 3D pattern showed high rates of contact with the body (84.6% and 93.1% for shirts and pants, respectively). Compared with the 2D pattern, the 3D pattern demonstrated closer contact at the lower chest, upper arm, and thigh regions, where electrocardiography and electromyography were primarily carried out. The overall average gap was also lower in the 3D pattern (5.27 and 4.66 mm in shirts and pants, respectively). In the underbust, waist, thigh circumference, and mid-thigh circumference, the cross-section distance between clothing and body was showed a statistically significant difference and evenly distributed in the 3D pattern, exhibiting more closeness. The tightness and fit of the 3D smart sportswear sensor pattern were successfully evaluated. We believe that this study is critical, as it facilitates the comparison of different patterns through visualization and digitization through 3D virtual fitting.

Numerical Study for Heat Transfer Characteristics Varying Cross-Sectional Shape of a Tube (관 단면형상 변화에 따른 열전달 특성에 관한 수치해석적 연구)

  • Park, Hun-Chae;Choi, Hang-Seok;Kim, Seock-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.7
    • /
    • pp.560-566
    • /
    • 2012
  • Numerical study has been carried out to investigate heat transfer and pressure drop characteristics for streamlined shape tubes. The flow and thermal fields are investigated with varying diameter ratio of the tube ranging from 0.4 to 2.5 and Reynolds number ranging from 10,000 to 30,000. The results show that heat transfer per unit fan power is maximum at $D_2/D_1=0.8$. Furthermore, the heat transfer per unit fan power of streamlined shape tubes was compared with circular tube. The heat transfer per unit fan power of streamlined shape tube was larger than that of circular tube.

Bending Characteristic Evaluations Circular Cross-section Carbon Composite and Hybrid Structural Material (원통단면 탄소복합재와 혼성 구조부재의 굽힘 특성 평가)

  • Kim, Jung-Ho;Jeong, Jong-An;Kim, Ji-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.421-424
    • /
    • 2012
  • Carbon Fiber reinforced composite material can be designed for the optimized performances of structural member that have achieve appropriate mechanical properties with cross-sectional shape, fiber direction, stacking sequence and thickness. So there are needed extensive databases each optimal design of CFRP structural member by impact through the preparation of different shape, interface number, thickness and stacking angle. When pressure is applied to structural member, compression, bending and torsion is shown on the corresponding member. For the effective utilization of fiber reinforced composite material as main structural member, optimized design technology should be established to maximize mechanical properties for compression, bending and torsion. In this paper, CFRP prepreg sheet with different stacking angle is manufactured in CFRP and hybrid(Al+CFRP) with circular cross-section. Strength and stiffness is gotten respectively by flexure test. CFRP structure and hybrid structure can be compared with each other. The best design guideline can be analyzed by use of this study result.

Shape Optimal Design of Elastic Concrete Dam (탄성콘크리트 댐의 모양최적설계)

  • Yoo, Yung Myun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.9-14
    • /
    • 1985
  • In this research mass of a plane strain two dimensional elastic concrete dam under gravitational and hydrostatic loads is minimized, through shape optimization of the dam cross section. Cross sectional area of the dam is taken as cost function of the optimization problem while constraints on the principal stress distribution and dam thickness are imposed. Shape of the boundary of the model is chosen as design variable. Variational formulation of the optimization problem, the material derivative idea of continuum mechanics, and an adjoint variable method are employed for the shape design sensitivity calculation. Then the gradient projection algorithm is utilized to obtain an optimum design iteratively. Research results fully demonstrate that the theory and procedure adopted are quite efficient and can be applicable to a wide class of practical elastic structural design problems.

  • PDF

A Evaluation of Fire Behavior According to Member Thickness of Precast Prestressed Hollow Core Slab of Fire Resistance Section (프리캐스트 프리스트레스트 내화단면 중공슬래브의 부재두께에 따른 화재거동평가 )

  • Yoon-Seob Boo;Kyu-Woong Bae;Sang-Min Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • At construction sites, interest in the production of precast materials is increasing due to off-site conditions due to changes in construction site conditions due to increased labor costs and the Act on the Punishment of Serious Accidents. In particular, the precast prestressed hollow slab has a hollow shape in the cross section, so structural performance is secured by reducing weight and controlling deflection through stranded wires. With the application of structural standards, the urgency of securing fire resistance performance is emerging. In this study, a fire-resistance cross section was developed by reducing the concrete filling rate in the cross section and improving the upper and lower flange shapes by optimizing the hollow shape in the cross section of the slab to have the same or better structural performance and economic efficiency compared to the existing hollow slab. The PC hollow slab to which this was applied was subjected to a two-hour fire resistance test using the cross-sectional thickness as a variable, and as a result of the test, fire resistance performance (load bearing capacity, heat shielding property, flame retardance property) was secured. Based on the experimental results, it is determined that fire resistance modeling can be established through numerical analysis simulation, and prediction of fire resistance analysis is possible according to the change of the cross-sectional shape in the future.

Effect of BFRP Wrapping on Seismic Behavior of Rectangular RC Columns (BFRP 보강이 직사각형 단면 철근콘크리트 기둥의 지진거동에 미치는 영향)

  • Lee, Hyerin;Cho, Junghyun;Lee, Seung-Geon;Lee, Su-Hyung;Hong, Kee-Jeung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.153-160
    • /
    • 2020
  • Columns are one of the most critical parts of a structural system subjected to earthquake excitations. In this regard, extensive experimental studies have been conducted to evaluate the effect of fiber reinforced polymer (FRP) wrapping on the seismic performance of reinforced concrete (RC) columns. Among them, many studies focused on the behavior of circular or square RC columns strengthened with CFRP or GFRP sheets. Since the cross-sectional shape affects confinement by FRP wrapping, its strengthening effect and final damage pattern may differ with shapes. In this study, a series of cyclic tests was conducted to investigate the seismic behavior of rectangular reinforced concrete columns strengthened with basalt-based fiber reinforced polymer (BFRP) sheets and composite fiber panels. The result shows that the effect of strengthening is not significant, and it implies a little increase of confinement by BFRP sheets and composite fiber panels, which is considered partly due to the cross-sectional shape of the columns.