• Title/Summary/Keyword: cross sectional analysis

Search Result 2,533, Processing Time 0.03 seconds

Next Generation Fiber Length Measurement

  • Tiikkaja, Esa;Sopenlehto, Taina
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.5
    • /
    • pp.54-59
    • /
    • 2000
  • The next generation fibre size analyser has been developed in Kajaani based on over 15 years experience in fibre measurement. This new FiberLab-analyser can measure fibre length both along the fibre centre line and as projected. The cross-sectional measurements of fibre are in principle similar to the earlier version FiberLab. Measured data are generally displayed in distributions. Some new calculations have been added, for example the fibres cross sectional area and fibre volume index both available as distributions as well. The performance of the FiberLab measurement is verified against the manual microscopic testing. These tests show that the new image analysis-based measurement well matches with the manual methods.

  • PDF

Research for development of our own image processing code for neutron tomography (중성자 토모그래피를 위한 영상처리 자체코드 개발 연구)

  • Kim, Jin Man;Kim, TaeJoo;Yu, Dong In
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.1
    • /
    • pp.44-49
    • /
    • 2020
  • Neutron radiography has been widely used in many research areas due to its different characteristics from X-rays. Neutron tomography is a powerful tool because it can clearly show the inside of an object that the eye cannot see. However, generally, commercial software is used for the reconstruction of neutron tomography. It means that maintenance costs are incurred and analysis is inefficient in some cases. In this respect, our own image processing code is required to reconstruct neutron images efficiently. In this study, an image processing code is developed for reconstruction of cross-sectional images from neutron radiography taken from the side of the object. Using the developed code, cross-sectional images of the sample are successfully reconstructed.

Optimization of Two-Step Cold Drawing for Upper Arch-Shape Solid Type Austenitic Stainless Steel (상단 아치 형상 중실 오스테나이트계 스테인리스강의 2단 인발 공정 최적화)

  • Bae, S.J.;Kim, J.H.;Hong, S.B.;Hong, S.K.;Namkung, J.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.394-403
    • /
    • 2022
  • In the automotive industry, cold-drawn austenitic stainless steel is commonly used to handle high fuel pressures in gasoline direct injection (GDI) engines. In this study, we analyzed the effects of main process variables such as cross-sectional shape, drawing speed and friction coefficient on the microstructure, hardness and residual stress of the drawn material in the two-step cold drawing process. By changing the cross-sectional shape in the first-step cold drawing, the possibility of improving the shape accuracy or physical properties of the finally cold-drawn fuel rail pressure sensor product was investigated.

The study of correlation between forward head posture and shoulder pain: A STROBE-compliant cross-sectional study

  • Kim, Hyun-Joong;Lee, DongJin
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.3
    • /
    • pp.251-256
    • /
    • 2021
  • Objective: The forward head posture (FHP) is strongly related to the rounded shoulder posture (RSP), which is associated with shoulder pain. Design: Observational cross sectional study design Methods: A total of 37 were enrolled in the study, 22 individuals with FHP(experimental group) and 15 healthy adults(control group). Correlation with differences between groups was analysed through craniovertebral angle (CVA) representing FHP for both groups, neck disability index (NDI) indicating neck pain, disability of the arm, shoulder and hand (DASH) indicating shoulder pain. Results: There was a significant difference in the results of CVA, NDI, and DASH in FHP and healthy adults (p<0.05). Significant correlations were found between DASH and CVA in FHP participants (r = -0.656, p = 0.001). Also, in the regression analysis results of DASH and CVA, the regression model was found to be suitable and the variation in DASH could be explained by 43% (F = 15.118, p = 0.001). Conclusions: Shoulder pain and neck discomfort are potentially related, and an increase in shoulder pain can increase FHP.

The Effect of Health Promotion Behavior on Emotional Happiness

  • Lee, Byunghyun;Kim, Jungae
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.20-27
    • /
    • 2019
  • This study was designed to examine the affect health promotion behavior to emotional happiness for 20-30's in Korea through cross-sectional descriptive research. There were a total of 279 people who participated in this study, 198(71.0%) were males and 81(29.0%) were females. The data collection period was from December 1 to 15, 2018. The tools used to measure health promotion behaviors were HPB (Health Promotion Behavior) developed by Walker et al., and emotional happiness was PANAS (Positive and Negative Affect Scale) by Developed by Watson et al., All data was analyzed using SPSS 18.0 program. As a result of analysis, 62 (49.6%) were solving interpersonal problems and stress relief while drinking, and the people who ate twice a day were most frequent. In conclusion, health promotion behaviors have a strong correlation with emotional happiness. Based on the above results, it was suggested that the program of happiness for lining in the 20-30s age groups should strengthen the contents of health responsibility, guidance of substance abuse, formation of social relations and self actualization.

Factors associated with healthcare utilization for infant falls in South Korea: a cross-sectional online survey

  • Soo-Yeon Han;Cho Hee Kim
    • Child Health Nursing Research
    • /
    • v.29 no.4
    • /
    • pp.252-259
    • /
    • 2023
  • Purpose: Falls are a common cause of unintentional injuries in infants. This study was conducted to examine the patterns of healthcare utilization following infant falls in South Korea. Methods: This cross-sectional descriptive study utilized an online survey designed to gather information regarding the general characteristics of parents and infants, fall-related variables, and healthcare use. Results: The most serious falls identified by parents occurred at an average infant age of 6.97 months. Most fall incidents took place indoors (95.7%), and many occurred under the supervision of caregivers (68.0%). Following the fall, 36.4% of the participants used healthcare services. Logistic regression analysis revealed that healthcare use following an infant fall was significantly associated with being a firstborn child (odds ratio [OR]=5.32, 95% confidence interval [CI], 2.19-15.28) and falling from a caregiver's arms (OR=4.22; 95% CI, 1.45-13.68). Conclusion: To prevent and decrease the frequency of infant falls, improvements are needed in both the domestic environment and parenting approaches.

Cross-sectional Optimization of a Human-Powered Aircraft Main Spar using SQP and Geometrically Exact Beam Model (기하학적 정밀 보 이론 및 SQP 기법에 의한 인간동력항공기 Main Spar 단면 설계 최적화 연구)

  • Kang, Seung-Hoon;Im, Byeong-Uk;Cho, Hae-Seong;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.4
    • /
    • pp.183-190
    • /
    • 2018
  • This paper presents optimization of the main spar of Human-Powered Aircraft (HPA) wing. Mass minimization was attempted, while considering large torsional deformation of the beam. Sequential Quadratic Programming (SQP) method was adopted as a relevant tool to conduct structural optimization algorithm. An inner diameter and ply thicknesses of the main spar were selected as the design variables. The objective function includes factors such as mass minimization, constant tip bending displacement, and constant tip twist of the beam. For estimation of bending and torsional deformation, the geometrically exact beam model, which is appropriate for large deflection, was adopted. Properties of the cross sectional area which the geometrically exact beam model requires were obtained by Variational Asymptotic Beam Sectional Analysis (VABS), which is a cross sectional analysis program. As a result, maintaining tip bending displacement and tip twist within 1.45%, optimal design that accomplished 7.88% of the mass reduction was acquired. By the stress and strain recovery, structural integrity of the optimal design and validity of the present optimization procedure were authenticated.

Improvement of Cross Sectional Distance Measurement Method of 3D Human Body (3차원 인체 형상의 공극거리 측정 방법 효율성 향상을 위한 연구)

  • Kim, Min-Kyoung;Nam, Yun-Ja;Han, Hyun-Sook;Choi, Young-Lim
    • Fashion & Textile Research Journal
    • /
    • v.13 no.6
    • /
    • pp.966-971
    • /
    • 2011
  • This study is designed to develop programs that analyze the distance of clothes from human skin and cross-sectional body figures based on 3D human body scan data, and to verify accuracy and efficiency of the program so that it can be used for clothing fit evaluation and 3D human body research. The auto cross-sectional imaging program was developed by using Visual C++ and OpenGL, and the 3D human body scan data were adopted to measure the space between skin and clothing. The space measurements were obtained by two widely used programs, RapidForm and AutoCAD, and a program devised by the researchers of this study. Measuring time and space measurements from different programs were compared in order to verify accuracy and efficiency of the newly-devised program. As a result, no significant difference was found in the measurements. However, the required time to measure one cross section was different within the significance level of 0.05, and the differences become more remarkable as the number of measuring and the angle of space between skin and clothing increase. Therefore, the program developed by this study is expected to be useful for research on body shapes and fit evaluation based on 3D human body scan data in the fashion field.

EFFECT OF CROSS-SECTIONAL AREA OF 6 NICKEL-TITANIUM ROTARY INSTRUMENTS ON THE FATIGUE FRACTURE UNDER CYCLIC FLEXURAL STRESS: A FRACTOGRAPHIC ANALYSIS (반복 굽힘 스트레스 하에서 전동식 니켈-티타늄 파일의 단면적의 크기가 피로파절에 미치는 영향 : 파절역학 분석)

  • Hwang, Soo-Youn;Oh, So-Ram;Lee, Yoon;Lim, Sang-Min;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.424-429
    • /
    • 2009
  • This study aimed to assess the influence of different cross-sectional area on the cyclic fatigue fracture of Ni-Ti rotary files using a fatigue tester incorporating cyclical axial movement. Six brands of Ni-Ti rotary files (ISO 30 size with. 04 taper) of 10 each were tested: Alpha system (KOMET), HeroShaper (MicroMega), K3 (SybronEndo), Mtwo (VDW), NRT (Mani), and ProFile (Dentsply). A fatigue-tester (Denbotix) was designed to allow cyclic tension and compressive stress on the tip of the instrument. Each file was mounted on a torque controlled motor (Aseptico) using a 1:20 reduction contra-angle and was rotated at 300 rpm with a continuous, 6 mm axial oscillating motion inside an artificial steel canal. The canal had a $60^{\circ}$ angle and a 5 mm radius of curvature. Instrument fracture was visually detected and the time until fracture was recorded by a digital stop watch. The data were analyzed statistically. Fractographic analysis of all fractured surfaces was performed to determine the fracture modes using a scanning electron microscope. Cross-sectional area at 3 mm from the tip of 3 unused Ni-Ti instruments for each group was calculated using Image-Pro Plus (Imagej 1.34n, NIH). Results showed that NRT and ProFile had significantly longer time to fracture compared to the other groups (p < .05). The cross-sectional area was not significantly associated with fatigue resistance. Fractographycally, all fractured surfaces demonstrated a combination of ductile and brittle fracture. In conclusion, there was no significant relationship between fatigue resistance and the cross-sectional area of Ni-Ti instruments under experimental conditions.

Vibration analysis of rotating beam with variable cross section using Riccati transfer matrix method

  • Feyzollahzadeh, Mahdi;Bamdad, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.199-207
    • /
    • 2019
  • In this paper, a semi-analytical method will be discussed for free vibration analysis of rotating beams with variable cross sectional area. For this purpose, the rotating beam is discretized through applying the transfer matrix method and assumed the axial force is constant for each element. Then, the transfer matrix is derived based on Euler-Bernoulli's beam differential equation and applying boundary conditions. In the following, the frequencies of the rotating beam with constant and variable cross sections are determined using the transfer matrix method in several case studies. In order to eliminate numerical difficulties in the transfer matrix method, the Riccati transfer matrix is employed for high rotation speed and high modes. The results are compared with the results of the finite elements method and Rayleigh-Ritz method which show good agreement in spite of low computational cost.