• Title/Summary/Keyword: cross section core

Search Result 194, Processing Time 0.027 seconds

The Field Coil End Effect of HTS Synchronous Motor (고온초전도 동기모터의 계자코일 단부의 영향)

  • 백승규;권운식;손명환;이언용;권영길
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.276-279
    • /
    • 2003
  • The superconducting synchronous machine(S.S.M) including generator and motor has different electromagnetic structure from the conventional machine. With the help of superconductor having much higher operating current density than normal conductor, S.S.M can eliminate most of iron core filling inside of the conventional machine. This air-cored structure could be analysed and designed theoretically based on 2-dimensional(2-D) magnetic field distribution assuming that the windings are extended infinitely toward the axial direction. However the actual structure of S.S.M has the end regions interconnecting the straight parts of the same cross-section with the 2-D model. Therefore, this actual 3-D model has smaller field distribution than the 2-D model. In this paper, we consider the effect of the end regions on the output of a HTS model motor and suggest more accurate design approach through comparison of 2-D and 3-D magnetic field analysis.

  • PDF

Subsonic Flutter Characteristics of a Sandwich Structure Wing with Honeycomb core (하니콤 코어 샌드위치 구조 날개의 아음속 플러터 특성)

  • Kim, Yu-Sung;Kim, Dong-Hyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.17-26
    • /
    • 2006
  • The flutter characteristics of all movable tail wing with honeycomb sandwich structure have been studied in this study. The present wing model has a airfoil cross section and the linear variation of spanwise thickness. Structural vibration analysis is performed based on the finite element method using sandwich and beam elements. Unsteady aerodynamic technique used on the doublet lattice method has been effectively used to conduct the frequency-domain flutter analyses. The parametric flutter studies have been performed for various structural design parameters. Computational results on flutter stability due to the variation of structural parameters are presented and its related characteristics are investigated through the comparison of results.

  • PDF

Evaluation of coolant density history effect in RBMK type fuel modelling

  • Tonkunas, Aurimas;Pabarcius, Raimоndas;Slavickas, Andrius
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2415-2421
    • /
    • 2020
  • The axial heterogeneous void distribution in a fuel channel is a relevant and important issue during nuclear reactor analysis for LWR, especially for boiling water channel-type reactors. Variation of the coolant density in fuel channel has an effect on the neutron spectrum that will in turn have an impact on the values of absolute reactivity, the void reactivity coefficient, and the fuel isotopic compositions during irradiation. This effect is referring to as the history effect in light water reactor calculations. As the void reactivity effect is positive in RBMK type reactors, the underestimation of water density heterogeneity in 3D reactor core numerical calculations could cause an uncertainty during assessment of safe operation of nuclear reactor. Thus, this issue is analysed with different cross-section libraries which were generated with WIMS8 code at different reference water densities. The libraries were applied in single fuel model of the nodal code of QUABOX-CUBBOX/HYCA. The thermohydraulic part of HYCA allowed to simulate axial water distribution along fuel assembly model and to estimate water density history effect for RBMK type fuel.

ELECTRICAL IMPEDANCE IMAGING FOR SEARCHING ANOMALIES

  • Ohin Kwon;Seo, Jin-Keun;Woo, Eung-Je;Yoon, Jeong-Rock
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.459-485
    • /
    • 2001
  • The aim of EIT (electrical impedance tomography) system is to image cross-section conductivity distribution of a human body by means of both generating and sensing electrodes attached on to the surface of the body, where currents are injected and voltages are measured. EIT has been suffered from the severe ill-posedness which is caused by the inherent low sensitivity of boundary measurements to any changes of internal tissue conductivity values. With a limited set of current-to-voltage data, figuring out full structure of the conductivity distribution could be extremely difficult at present time, so it could be worthwhile to extract some necessary partial information of the internal conductivity. We try to extract some key patterns of current-to-voltage data that furnish some core information on the conductivity distribution such s location and size. This overview provides our recent observation on the location search and the size estimation.

  • PDF

Development of Sodium Voiding Model for the KALIMER Analysis

  • Chang, Won-Pyo;Dohee Hahn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.286-300
    • /
    • 2002
  • An algorithm for the sodium boiling model has been developed for calculation of the void reactivity feedback as well as the fuel and cladding temperatures in the KALIMER core after onset of sodium boiling. Modeling of sodium boiling in liquid metal reactors using sodium as a coolant is necessary because of phenomenon difference comparing with that observed generally in light water reactor systems. The applied model to the algorithm is the multiple-bubble slug ejection model. It allows a finite number of bubbles in a channel at any time. Voiding is assumed to result from formation of bubbies that (ill the whole cross section of the coolant channel except for the liquid film left on the cladding surface. The vapor pressure, currently, is assumed to be uniform within a bubble The present study is focused on not only demonstration of the vapor bubble behavior predicted by the developed model, but also confirmation of a qualitative acceptance for the model. As a result, the model can represent important phenomena in the sodium boiling, but it is found that further effort is also needed for its completition.

Mechanical behavior of outer square inner circular concrete-filled dual steel tubular stub columns

  • Ding, Fa-xing;Wang, Wenjun;Liu, Xue-mei;Wang, Liping;Sun, Yi
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.305-317
    • /
    • 2021
  • The mechanical behavior of the outer square inner circular concrete-filled dual steel tubular (SCCFT) stub columns under axial compression is investigated by means of experimental research, numerical analysis and theoretical investigation. Parameters such as diameter ratio, concrete strength and steel ratio were discussed to identify their influence on the mechanical properties of SCCFT short columns on the basis of the experimental investigation of seven SCCFT short columns. By establishing a finite element model, nonlinear analysis was performed to discuss the longitudinal and transverse stress of the dual steel tubes. The longitudinal stress characteristics of the core and sandwich concrete were also analyzed. Furthermore, the failure sequence was illustrated and the reasonable cross-section composition of SCCFT stub column was proposed. A formula to predict the axial load capacity of SCCFT stub column was advanced and verified by the results from experiment and the finite element.

Dynamic analysis of the micropipes reinforced via the carbon dioxide adsorption mechanism based on the mathematical simulation

  • Liu, Yunye
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.185-196
    • /
    • 2022
  • In this paper, the dynamic characteristics of a composite cylindrical beam made of a mechanism of carbon dioxide absorption coated on the tube core are investigated based on the classical beam theory coupled with the modified couple stress theory. The composite tube structures are assumed to be uniform along the tube length, and the energy method regarding the Hamilton principle is utilized for generating the governing equations. A powerful numerical solution, the generalized differential quadrature method (GDQM), is employed to solve the differential equations. The carbon dioxide trapping mechanism is a composite consisting of a polyacrylonitrile substrate and a cross-link polydimethylsiloxane gutter layer. Methacrylate, poly (ethylene glycol), methyl ether methacrylate, and three pedant methacrylates are all taken into account as potential mechanisms for capturing carbon dioxide. The application of the present study is helpful in the design and production of microelectromechanical systems (MEMS) and the different valuable parameters, such as the length-scale parameter, rate of section change, aspect ratio, etc., are presented in detail.

Outflow Characteristics of Nakdong River Plume (낙동강수의 유출특성에 관한 연구)

  • 김기철;김재중;김영의;한건모;최광규;장성태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.4
    • /
    • pp.305-313
    • /
    • 1996
  • CTD measurements were conducted in the Nakdong estuary on the several sections or along-plume and cross-plume directions in 1993 and 1994. Internal Froude number Fi=0.22-0.35 in ebb tides and 0.14 in flood tides suggest that Nakdong river plume may go farther seawards in the along-plume direction with little mixing with the adjacent sea water after the construction of Nakdong river barrier. From Dadae-Po to Gaduk-Do section of cross-plume direction, three cores of low salinity were found. The main plume outflows from the newly made channel by cutting Ulsuk-Do after the construction of barrier. The low salinity core found near Gaduk-Do is the plume patch advected by tidal currents. Rossby deformation radius varied with the tidal cycle so that Coriolis effect is strengthened in flood tides to deepen the isohalines westwards to the Gaduk-Do site. Internal wavelike shape was found in the section of cross-plume direction during ebb tides. Richardson number of the section suggests the possibility of forming internal wave but more precise observations are necessary.

  • PDF

Modified Equation for Ductility Demand Based Confining Reinforcement Amount of RC Bridge Columns (철근콘크리트 교각의 소요연성도에 따른 심부구속철근량 산정식 수정)

  • Lee, Jae-Hoon;Son, Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • An equation for calculating confining reinforcement amount of RC bridge columns, specified in the current bridge design codes, has been made to provide additional load-carrying strength for concentrically loaded columns. The additional load-carrying strength will be equal to or slightly greater than the resistant strength of a column against axial load, which is lost because the cover concrete spalls off. The equation considers concrete compressive strength, yield strength of transverse reinforcement, and the section area ratio as major variables. Among those variables, the section area ratio between the gross section and the core section, varying by cover thickness, is a variable which considers the strength in the compression-controlled region. Therefore, the cross section ratio does not have a large effect in the aspect of ductile behavior of the tension-controlled region, which is governed by bending moment rather than axial force. However, the equation of the design codes for calculating confining reinforcement amount does not directly consider ductile behavior, which is an important factor for the seismic behavior of bridge columns. Consequently, if the size of section is relatively small or if the section area ratio becomes excessively large due to the cover thickness increased for durability, too large an amount of confining reinforcement will be required possibly deteriorating the constructability and economy. Against this backdrop, in this study, comparison and analysis were performed to understand how the cover thickness influences the equation for calculating the amount of confining reinforcement. An equation for calculating the amount of confining reinforcement was also modified for reasonable seismic design and the safety. In addition, appropriateness of the modified equation was examined based on the results of various test results performed at home and abroad.

Thermal field of large-diameter concrete filled steel tubular members under solar radiation

  • Yang, Daigeng;Chen, Guorong;Ding, Xiaofei;Xu, Juncai
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.343-350
    • /
    • 2020
  • Concrete-filled steel tubular (CFST) members have been widely used in engineering, and their tube diameters have become larger and larger. But there is no research on the thermal field of large-diameter CFST structure. These studies focused on the thermal field of the large-diameter CFST structure under solar radiation. The environmental factors and the actual placement position were considered, and the finite element model (FEM) of the thermal field of CFST members under solar radiation (SR) was established. Then the FEM was verified by practical experiments. The most unfavorable temperature gradient model in the cross-section was proposed. The testing results showed that the temperature field of the large-diameter CFST member section was non-linearly distributed due to the influence of SR. The temperature field results of CFST members with different pipe diameters indicated that the larger the core concrete diameter was, the slower the central temperature changed, and there was a significant temperature difference between the center and the boundary. Based on the numerical model, the most unfavorable temperature gradient model in the section was proposed. The model showed that the temperature difference around the center of the circle is small, and the boundary temperature difference is significant. The maximum temperature difference is 15.22℃, which appeared in the southern boundary area of the specimen. Therefore, it is necessary to consider the influence of SR on the thermal field of the member for large-diameter CFST members in actual engineering, which causes a large temperature gradient in the member.