• 제목/요약/키워드: cross entropy

검색결과 119건 처리시간 0.03초

Cross-Entropy를 이용한 전력계통계획의 확률적 기법 연구 (Probabilistic Technique for Power System Transmission Planning Using Cross-Entropy Method)

  • 이재희;주성관
    • 전기학회논문지
    • /
    • 제58권11호
    • /
    • pp.2136-2141
    • /
    • 2009
  • Transmission planning is an important part of power system planning to meet an increasing demand for electricity. The objective of transmission expansion is to minimize operational and construction costs subject to system constraints. There is inherent uncertainty in transmission planning due to errors in forecasted demand and fuel costs. Therefore, transmission planning process is not reliable if the uncertainty is not taken into account. The paper presents a systematic method to find the optimal location and amount of transmission expansion using Cross-Entropy (CE) incorporating uncertainties about future power system conditions. Numerical results are presented to demonstrate the performance of the proposed method.

고주파에 적합한 교차 엔트로피 손실함수에 대한 초해상도 (Super-Resolution with Cross-Entropy Loss Adapted to High Frequencies)

  • 오윤주;김태현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.709-710
    • /
    • 2024
  • Super resolution에서 High-frequency Details를 개선하는 것이 최근 문제이다. 기존에는 Super resolution을 Regression task로 접근하므로써 L2 Loss를 사용하여 이미지가 흐릿하게 되었다. 이를 해결하기위해, Classification task로 바꾸므로써 Cross Entropy Loss을 적용하여 Cross-entropy Super-resolution (CS)를 설계한다. CS를 통해 선명도와 Details이 개선되지만, 저주파의 CE Loss 학습으로인한 Black Artifacts가 발생한다. 그래서, L2 Loss는 저주파와 같이 큰 신호에 더 초점을 맞추므로, 성능 개선을 위해 저주파를 L2 Loss에서, 고주파를 CE Loss에서 학습시킨 Frequency-specific Cross-entropy Super-resolution (FCS)을 제안한다. 우리는 왜곡에 강하며 Human의 인식과 유사한 측정지표인 Learned Perceptual Image Patch Similarity (LPIPS)로 평가한다. 실험한 모든 데이터 셋에서 우리의 FCS는 Baseline보다 LPIPS가 약 1.7배 정도 개선되었다.

위성 영상의 효과적인 분석을 위한 밝기와 크로스 엔트로피 기반의 그림자 검출 (Shadow Detection Based Intensity and Cross Entropy for Effective Analysis of Satellite Image)

  • 박기홍
    • 한국항행학회논문지
    • /
    • 제20권4호
    • /
    • pp.380-385
    • /
    • 2016
  • 그림자는 자연 영상에서 관찰되는 물리적인 현상이지만 위성 영상 분석에 부정적인 영향을 미치는 요소로 컴퓨터 비전의 전처리 과정에서 그림자 검출 과정은 매우 중요하다. 본 논문에서는 싱글 영상 기반의 위성 영상에서 효과적인 영상 분석을 위해 그림자를 검출하는 방법으로 크로스 엔트로피와 밝기 영상을 이용해 그림자를 검출하는 방법을 제안하였다. 칼라 영상을 그레이 레벨 영상으로 변환한 후 크로스 엔트로피를 기반으로 최적의 임계값을 추정하여 첫 번째 그림자 후보 영역으로 판별하였고, 칼라 영상의 밝기 영상을 이용해 최종 그림자 영역을 검출하였다. 제안하는 방법의 타당성을 위해 위성 영상들을 대상으로 실험하였고, 실험 결과 제안하는 그림자를 검출 방법이 효과적으로 수행됨을 확인하였다.

Three-dimensional structural health monitoring based on multiscale cross-sample entropy

  • Lin, Tzu Kang;Tseng, Tzu Chi;Lainez, Ana G.
    • Earthquakes and Structures
    • /
    • 제12권6호
    • /
    • pp.673-687
    • /
    • 2017
  • A three-dimensional; structural health monitoring; vertical; planar; cross-sample entropy; multiscaleA three-dimensional structural health monitoring (SHM) system based on multiscale entropy (MSE) and multiscale cross-sample entropy (MSCE) is proposed in this paper. The damage condition of a structure is rapidly screened through MSE analysis by measuring the ambient vibration signal on the roof of the structure. Subsequently, the vertical damage location is evaluated by analyzing individual signals on different floors through vertical MSCE analysis. The results are quantified using the vertical damage index (DI). Planar MSCE analysis is applied to detect the damage orientation of damaged floors by analyzing the biaxial signals in four directions on each damaged floor. The results are physically quantified using the planar DI. With progressive vertical and planar analysis methods, the damaged floors and damage locations can be accurately and efficiently diagnosed. To demonstrate the performance of the proposed system, performance evaluation was conducted on a three-dimensional seven-story steel structure. According to the results, the damage condition and elevation were reliably detected. Moreover, the damage location was efficiently quantified by the DI. Average accuracy rates of 93% (vertical) and 91% (planar) were achieved through the proposed DI method. A reference measurement of the current stage can initially launch the SHM system; therefore, structural damage can be reliably detected after major earthquakes.

크로스 엔트로피 기반 스펙트럼 센싱에서 채널 점유 시간 변화에 따른 히스토그램 Bin 개수 선택 기법 (Histogram Bin Number Selection Method Robust to the Variations of Channel Occupancy for Cross Entropy)

  • 용슬바로;장성진;김재명
    • 한국ITS학회 논문지
    • /
    • 제12권1호
    • /
    • pp.88-97
    • /
    • 2013
  • 기존에 제안된 대부분의 스펙트럼 센싱 기법은 해당 시간에 센싱 된 우선사용자의 신호만을 다루고 있다. 하지만 해당 시간 이전의 우선사용자의 상태를 이용하게 되면 조건부 확률을 사용하여 검출기의 신뢰성을 증가시킬 수 있다. 따라서 크로스 엔트로피(Cross Entropy) 기반의 스펙트럼 센싱 기법에서는 해당 시간 이전의 우선사용자의 상태도 함께 이용하는 기법을 제안하였으며 이를 통해 우선사용자 신호 검출 성능을 향상시키고 잡음에 강인한 성능을 갖도록 하였다. 그러나 이러한 크로스 엔트로피 기반의 스펙트럼 센싱 기법은 모두 실제 이상적인 센싱 환경만을 고려하였다. 다시 말해, 우선사용자의 채널 점유 시간이 항상 일정하다고 가정한 상태에서 센싱을 수행하였다. 하지만 실제 상황에서는 우선사용자가 채널을 점유하는 시간이 이상적인 상황보다 길어질 수도, 반대로 짧아질 수도 있으며 이로 인해 스펙트럼 센싱 성능이 변화 할 수 있다. 따라서 본 논문에서는 이러한 실제 상황에서도 센싱 성능을 일정하게 유지할 수 있는 기법을 제안하였으며 이를 시뮬레이션을 통해 확인하였다.

불균형 블랙박스 동영상 데이터에서 충돌 상황의 다중 분류를 위한 손실 함수 비교 (Comparison of Loss Function for Multi-Class Classification of Collision Events in Imbalanced Black-Box Video Data)

  • 이의상;한석민
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.49-54
    • /
    • 2024
  • 데이터 불균형은 분류 문제에서 흔히 마주치는 문제로, 데이터셋 내의 클래스간 샘플 수의 현저한 차이에서 기인한다. 이러한 데이터 불균형은 일반적으로 분류 모델에서 과적합, 과소적합, 성능 지표의 오해 등의 문제를 야기한다. 이를 해결하기 위한 방법으로는 Resampling, Augmentation, 규제 기법, 손실 함수 조정 등이 있다. 본 논문에서는 손실 함수 조정에 대해 다루며 특히, 불균형 문제를 가진 Multi-Class 블랙박스 동영상 데이터에서 여러 구성의 손실 함수(Cross Entropy, Balanced Cross Entropy, 두 가지 Focal Loss 설정: 𝛼 = 1 및 𝛼 = Balanced, Asymmetric Loss)의 성능을 I3D, R3D_18 모델을 활용하여 비교하였다.

다층퍼셉트론의 오류역전파 학습과 계층별 학습의 비교 분석 (Comparative Analysis on Error Back Propagation Learning and Layer By Layer Learning in Multi Layer Perceptrons)

  • 곽영태
    • 한국정보통신학회논문지
    • /
    • 제7권5호
    • /
    • pp.1044-1051
    • /
    • 2003
  • 본 논문은 MLP의 학습 방법으로 사용되는 EBP학습, Cross Entropy함수, 계층별 학습을 소개하고, 필기체 숫자인식 문제를 대상으로 각 학습 방법의 장단점을 비교한다. 실험 결과, EBP학습은 학습 초기에 학습 속도가 다른 학습 방법에 비해 느리지만, 일반화 성능이 좋다. 또한, EBP학습의 단점을 보안한 Cross Entropy 함수는 학습 속도가 EBP학습보다 빠르다. 그러나, 출력층의 오차 신호가 목표 벡터에 대해 선형적으로 학습하기 때문에, 일반화 성능이 EBP학습보다 낮다. 그리고, 계층별 학습은 학습 초기에, 학습 속도가 가장 빠르다. 그러나, 일정한 시간 후, 더 이상 학습이 진행되지 않기 때문에, 일반화 성능이 가장 낮은 결과를 얻었다. 따라서, 본 논문은 MLP를 응용하고자 할 때, 학습 방법의 선택 기준을 제시한다.

CNN을 이용한 발화 주제 다중 분류 (Multi-labeled Domain Detection Using CNN)

  • 최경호;김경덕;김용희;강인호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.56-59
    • /
    • 2017
  • CNN(Convolutional Neural Network)을 이용하여 발화 주제 다중 분류 task를 multi-labeling 방법과, cluster 방법을 이용하여 수행하고, 각 방법론에 MSE(Mean Square Error), softmax cross-entropy, sigmoid cross-entropy를 적용하여 성능을 평가하였다. Network는 음절 단위로 tokenize하고, 품사정보를 각 token의 추가한 sequence와, Naver DB를 통하여 얻은 named entity 정보를 입력으로 사용한다. 실험결과 cluster 방법으로 문제를 변형하고, sigmoid를 output layer의 activation function으로 사용하고 cross entropy cost function을 이용하여 network를 학습시켰을 때 F1 0.9873으로 가장 좋은 성능을 보였다.

  • PDF

On Information Theoretic Index for Measuring the Stochastic Dependence Among Sets of Variates

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제26권1호
    • /
    • pp.131-146
    • /
    • 1997
  • In this paper the problem of measuring the stochastic dependence among sets fo random variates is considered, and attention is specifically directed to forming a single well-defined measure of the dependence among sets of normal variates. A new information theoretic measure of the dependence called dependence index (DI) is introduced and its several properties are studied. The development of DI is based on the generalization and normalization of the mutual information introduced by Kullback(1968). For data analysis, minimum cross entropy estimator of DI is suggested, and its asymptotic distribution is obtained for testing the existence of the dependence. Monte Carlo simulations demonstrate the performance of the estimator, and show that is is useful not only for evaluation of the dependence, but also for independent model testing.

  • PDF

인공지지체 불량 검출을 위한 딥러닝 모델 손실 함수의 성능 비교 (Performance Comparison of Deep Learning Model Loss Function for Scaffold Defect Detection)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제22권2호
    • /
    • pp.40-44
    • /
    • 2023
  • The defect detection based on deep learning requires minimal loss and high accuracy to pinpoint product defects. In this paper, we confirm the loss rate of deep learning training based on disc-shaped artificial scaffold images. It is intended to compare the performance of Cross-Entropy functions used in object detection algorithms. The model was constructed using normal, defective artificial scaffold images and category cross entropy and sparse category cross entropy. The data was repeatedly learned five times using each loss function. The average loss rate, average accuracy, final loss rate, and final accuracy according to the loss function were confirmed.

  • PDF