• Title/Summary/Keyword: cropland

Search Result 125, Processing Time 0.031 seconds

A Survey of Expert's Perceptions about Landscape Elements in Organic Farmland (유기농경지 농업생산경관 구성요소에 대한 전문가 인식 조사)

  • An, Phil-Gyun;An, Nan-Hee;Shin, Ji-Hoon;Shin, Jea-Hoon
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.681-698
    • /
    • 2016
  • With increasing public concern for environmentally friendly agriculture, ecological aspect of landscape management is of growing importance. AHP (Analytical Hierarchy Process) analysis were conducted based on the delphi survey of 31 experts to evaluate the relative importance and the preference of landscape elements. Landscape components of organic farmland were classified into 2 landscape fields, 5 landscape types, 14 landscape units, and 37 landscape elements. Overall relevance score for the proposed landscape components were about 5.5 on the seven point scale. While the relative importance weight of cropland landscape field was 0.71, the weight of intra-structure landscape field was 0.29. Among the cropland landscape, relatively higher weight was assigned to farming system (0.47) and margins (0.31), as compared with hydrological system (0.22). In the farming system, crop (0.40) and farm land (0.39) were the most important landscape units. In the margins, higher weight was given to Buffer zone (0.44) and Trees (0.42). Biological habitat (0.43) ranked the highest score in the hydrological system. Preferable landscape elements were glass house, companion plants, rice paddy field, diverse crop species, small pond, and small river, which are representing ecological advantage of organic farming systems. This result indicated that the landscape elements identified in the study would be suitable to evaluate ecological aspect of rural landscape in organic farmland.

Evaluation of a Land Use Change Matrix in the IPCC's Land Use, Land Use Change, and Forestry Area Sector Using National Spatial Information

  • Park, Jeongmook;Yim, Jongsu;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.4
    • /
    • pp.295-304
    • /
    • 2017
  • This study compared and analyzed the construction of a land use change matrix for the Intergovernmental Panel on Climate Change's (IPCC) land use, land use change, and forestry area (LULUCF). We used National Forest Inventory (NFI) permanent sample plots (with a sample intensity of 4 km) and permanent sample plots with 500 m sampling intensity. The land use change matrix was formed using the point sampling method, Level-2 Land Cover Maps, and forest aerial photographs (3rd and 4th series). The land use change matrix using the land cover map indicated that the annual change in area was the highest for forests and cropland; the cropland area decreased over time. We evaluated the uncertainty of the land use change matrix. Our results indicated that the forest land use, which had the most sampling, had the lowest uncertainty, while the grassland and wetlands had the highest uncertainty and the least sampling. The uncertainty was higher for the 4 km sampling intensity than for the 500 m sampling intensity, which indicates the importance of selecting the appropriate sample size when constructing a national land use change matrix.

EFFECT OF GRASS FILTER STRIPS ON REDUCING $PO_4$-P LOSS IN RUNOFF FROM FORAGE CROPLAND

  • Jung, M.W.;Jo, N.C.;Yoon, S.H.;Kim, W.H.;Kim, K.Y.;Sung, S.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.169-173
    • /
    • 2011
  • The performance of grass filter strips (GFS) in abating $PO_4$-P concentrations from the forage cropland was tested in an experiment on the 10% slope in Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration (RDA) from October 2007 to September 2009. Forage croplands with rye-corn double cropping system applied with chemical fertilizer and livestock manure (LM) were compared in a natural condition. The plots were hydrologically isolated Main plots consisted of the length of GFS, such as 0m, 5m, 10m and 15m. Sub plots consisted of the type of LM, such as chemical fertilizer (CF), composted cattle manure (CCM) and composted swine manure (CSM). Concentrations of PO4-P in surface runoff water were reduced as the length of GFS increased. Especially, GFS with 10m and 15m reduced $PO_4$-P concentrations significantly compared to that with 0m and 5m (p<0.05). The results from this study suggest that GFS improved the removal and trapping $PO_4$-P from forage croplands.

Adsorption Characteristics of Aqueous Phosphate Using Biochar Derived from Oak Tree (참나무 바이오차의 인산염 인(PO4-P) 흡착특성)

  • Choi, Yong-Su;Hong, Seung-Gil;Kim, Sung-Chul;Shin, Joung-Du
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.3
    • /
    • pp.60-67
    • /
    • 2015
  • Objective of this study was to investigate adsorption characteristics of $PO_4-P$ to biochar produced from oak tree in respective to reduce eutrophication from runoff water in the cropland. For adsorption experiment, input amount of biochar was varied from 4 to 20 g/L with 30 mg/L $PO_4-P$ solution. Adsorption amounts and removal rates of $PO_4-P$ was increased at 3 times in 4~14 g/L, and increased at 28.6% in 4~16 g/L, respectively. The maximum adsorption amount ($q_m$) and binding strength constant(b) were calculated as 0.10 mg/g and 0.06 L/mg, respectively. The sorption of $PO_4-P$ to biochar was fitted well by Langmuir model because it was observed that dimensionless constant($R_L$) was 0.37. It was indicated that biochar is favorably adsorbed $PO_4-P$ because this value lie within 0 < $R_L$ < 1. Therefore, biochar produced from oak tree could be used as adsorbent for reduce eutrophication from runoff water in the cropland.

Characteristics of MODIS land-cover data sets over Northeast Asia for the recent 12 years(2001-2012) (동북아시아 지역에서의 최근 12년간 (2001-2012) MODIS 토지피복 분류 자료의 특성)

  • Park, Ji-Yeol;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.511-524
    • /
    • 2014
  • In this study, we investigated the statistical occupations and interannual variations of land cover types over Northeast Asian region using the 12 years (2001-2012) MODerate Resolution Imaging Spectroradiometer(MODIS) land cover data sets. The spatial resolution and land cover types of MODIS land cover data sets are 500 m and 17, respectively. The 12-year average shows that more than 80% of the analysis region is covered by only 3 types of land cover, cropland (36.96%), grasslands (23.14%) and mixed forests (22.97%). Whereas, only minor portion is covered by cropland/natural vegetation mosaics (6.09%), deciduous broadleaf forests (4.26%), urban and built-up (2.46%) and savannas (1.54%). Although sampling period is small, the regression analysis showed that the occupations of evergreen needleleaf forests, deciduous broadleaf forests and mixed forests are increasing but the occupations of woody savannas and savannas are decreasing. In general, the pixels where the land cover types are classified differently with year are amount to more than 10%. And the interannual variations in the occupations of land cover types are most prominent in cropland (1.41%), mixed forests (0.82%) and grasslands (0.73%). In addition, the percentage of pixels classified as 1 type for 12 years is only 57% and the other pixels are classified as more than 2 types, even 9 types. The annual changes in the classification of land cover types are mainly occurred at the almost entire region, except for the eastern and northwestern parts of China, where the single type of land cover located. When we take into consider the time scale needed for the land cover changes, the results indicate that the MODIS land cover data sets over the Northeast Asian region should be used with caution.

Spatial Analysis of Landscape Structure Changes Caused by the US Conservation Reserve Program in the Central High Plains (미중부지역 농지보전 프로그램에 의한 경관구조 변화분석)

  • Park, Sun-Yurp;Egbert, Stephen L
    • Journal of the Korean association of regional geographers
    • /
    • v.9 no.4
    • /
    • pp.519-533
    • /
    • 2003
  • The U.S. Conservation Reserve Program (CRP) resulted in the conversion of approximately 14.8 million ha(36.5 million acres) of cropland to grassland, woodland, and other conservation uses throughout the U.S. between 1986 and 1992. One of the major results of CRP has been the addition of millions of hectares of potential wildlife habitat. primarily as grassland. In this study, we examined regional changes in landscape structure caused by the introduction of CRP. Utilizing multi-seasonal Landsat Thematic Mapper imagery, we produced maps of cropland and grassland for the pre- and post- CRP enrollment periods for a six-county region in southwest Kansas. We then applied post-classification differencing to identify regions of cropland that had been converted to CRP. Using the FRAGSTATS spatial pattern analysis program, we calculated a variety of spatial statistics to analyze changes in landscape structure due to CRP. The major impact of CRP in the six-county study area has been the reversal of an overall trend of grassland habitat fragmentation. From the standpoint of potential wildlife habitat, the introduction of CRP has greatly increased the number of patches, mean patch size, and the interior or core area of grassland patches. In addition, CRP has increased connectivity and aggregation between grassland patches, potentially important factors for species of conservation interest, particularly those that require larger expanses of unbroken habitat. Finally, the distance between neighboring patches of grassland has decreased, reducing travel distance between patches. Clearly, the introduction of CRP has substantially modified the spatial structure of the southwest Kansas landscape, with important implications for wildlife habitat.

  • PDF

Trend and Affecting Factors of Ecological Deficit in North Korea (북한의 생태적자 추이 및 영향요인 분석)

  • Yeo, Min Ju;Kim, Yong Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.1
    • /
    • pp.56-72
    • /
    • 2018
  • North Korea has been in ecologically deficit state since 1966, despite of lack of energy and food resources. Trends of the Biocapacity (BC), the Ecological Footprint (EF), and the Ecological Deficit (ED) of North Korea were shown and five factors influencing on the Overshoot Rate (OSR) which is the ratio of the BC and the EF in North Korea was analyzed in this study. The five factors consist of two factors affecting to the EF and three factors affecting to the BC in North Korea. Two of the five factors are affecting to the EF those are population, the EF per capita (EFPC) which indicates the individual environmental consumption intensity, and three are affecting to the BC those are the land area, the yield factor, and the value multiplying the equivalence factor and the intertemporal yield factor. The EF has contributed more than the BC to the OSR. From 1966 to mid-1990s, the EFPC was the most contributing factor at about 60%, and after mid-1990s, population at about 40~60%. Contribution ratio of land area and the yield factor have increased after mid-1990s up to 15% and 18%, respectively. The BC of cropland which has decreased due to a decrease in productivity. In order to reduce the ED of North Korea, improvement of productivity of cropland and restoration of forest. Forest area has decreased significantly since 1990 in NK. And ways to solve the food shortage problem which influences on decrease of both productivity of cropland and forest area.

Comparison of Pollutant Load Discharge Characteristics with Chemical Fertilizer and Organic Compost Applications (화학비료와 유기비료 시비후 오염배출 농도 특성 비교)

  • Lyou, Chang-Woun;Shin, Yong-Cheol;Heo, Sung-Gu;Choi, Ye-Hwan;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.490-495
    • /
    • 2005
  • Organic compost has been widely applied to the cropland because it has been thought as Environmentally Sound Agriculture (ESA) in Korea. However, many field researches have been done to investigate water quality impacts of organic compost uses, compared to those from chemical fertilizer applications. It was found that pollutant loads from organic compost applied croplands were higher than those from chemical fertilizer applied areas. However, there might be other unknown factors affecting the results since the experiments were performed at the outside fields. In this study, indoor rainfall experiments using the Norton rainfall simulator systems were done to minimize and exclude errors from unknown sources by controlling soil characteristics, rainfall amount, rainfall intensity, and fertilizer treatments. The amounts of surface runoff and groundwater percolated from 10% and 20% slope plots were measured and water quality samples were collected and analyzed for BOD, COD, and T-P. Flow weighted mean concentration (FWMC) values were computed to assess effects of different fertilizer treatments. It was found that average concentration values of BOD were 5.57 mg/L from chemical fertilizer treated plot and 8.08 mg/L from organic compost treated plots. For 10% slope, FWMC BOD values from organic compost treated plots were higher by 29.9% than those from chemical fertilizer treated plots. For 20% slope, FWMC BOD values from organic plots were higher by 38.8% than those from chemical fertilizer plots. FWMC BOD values for 20% slope plots were higher than those from those for 10% slope plots. The similar trends were found for COD and T-P. In Korea, excessive use of organic compost has caused extremely high levels of organic matter contents at the cropland. Organic compost are usually applied to the cropland to improve soil quality, while chemical fertilizer is applied to help crop growth. Since organic compost is very slow in releasing its nutrients to the soil, farmers usually apply excessive organic compost for immediate effects and maximum crop yields, which has been causing soil and water quality degradations. Therefore, thorough investigations for better nutrient management plans are needed to develop the ESA strategy in Korea.

  • PDF

Estimation of soil moisture based on Sentinel-1 SAR data: Assessment of soil moisture estimation in different vegetation condition (Sentinel-1 SAR 토양수분 산정 연구: 식생에 따른 토양수분 모의평가)

  • Cho, Seongkeun;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.2
    • /
    • pp.81-91
    • /
    • 2021
  • Synthetic Apreture Radar (SAR) is attracting attentions with its possibility of producing high resolution data that can be used for soil moisture estimation. High resolution soil moisture data enables more specific observation of soil moisture than existing soil moisture products from other satellites. It can also be used for studies of wildfire, landslide, and flood. The SAR based soil moisture estimation should be conducted considering vegetation, which affects backscattering signals from the SAR sensor. In this study, a SAR based soil moisture estimation at regions covered with various vegetation types on the middle area of Korea (Cropland, Grassland, Forest) is conducted. The representative backscattering model, Water Cloud Model (WCM) is used for soil moisture estimation over vegetated areas. Radar Vegetation Index (RVI) and in-situ soil moisture data are used as input factors for the model. Total 6 study areas are selected for 3 vegetation types according to land cover classification with 2 sites per each vegetation type. Soil moisture evaluation result shows that the accuracy of each site stands out in the order of grassland, forest, and cropland. Forested area shows correlation coefficient value higher than 0.5 even with the most dense vegetation, while cropland shows correlation coefficient value lower than 0.3. The proper vegetation and soil moisture conditions for SAR based soil moisture estimation are suggested through the results of the study. Future study, which utilizes additional ancillary vegetation data (vegetation height, vegetation type) is thought to be necessary.