DOI QR코드

DOI QR Code

Estimation of soil moisture based on Sentinel-1 SAR data: Assessment of soil moisture estimation in different vegetation condition

Sentinel-1 SAR 토양수분 산정 연구: 식생에 따른 토양수분 모의평가

  • Cho, Seongkeun (Department of Water Resources, Sungkyunkwan University) ;
  • Jeong, Jaehwan (Department of Water Resources, Sungkyunkwan University) ;
  • Lee, Seulchan (Department of Water Resources, Sungkyunkwan University) ;
  • Choi, Minha (Department of Water Resources, Sungkyunkwan University)
  • 조성근 (성균관대학교 수자원학과) ;
  • 정재환 (성균관대학교 수자원학과) ;
  • 이슬찬 (성균관대학교 수자원학과) ;
  • 최민하 (성균관대학교 수자원학과)
  • Received : 2020.10.30
  • Accepted : 2020.12.23
  • Published : 2021.02.28

Abstract

Synthetic Apreture Radar (SAR) is attracting attentions with its possibility of producing high resolution data that can be used for soil moisture estimation. High resolution soil moisture data enables more specific observation of soil moisture than existing soil moisture products from other satellites. It can also be used for studies of wildfire, landslide, and flood. The SAR based soil moisture estimation should be conducted considering vegetation, which affects backscattering signals from the SAR sensor. In this study, a SAR based soil moisture estimation at regions covered with various vegetation types on the middle area of Korea (Cropland, Grassland, Forest) is conducted. The representative backscattering model, Water Cloud Model (WCM) is used for soil moisture estimation over vegetated areas. Radar Vegetation Index (RVI) and in-situ soil moisture data are used as input factors for the model. Total 6 study areas are selected for 3 vegetation types according to land cover classification with 2 sites per each vegetation type. Soil moisture evaluation result shows that the accuracy of each site stands out in the order of grassland, forest, and cropland. Forested area shows correlation coefficient value higher than 0.5 even with the most dense vegetation, while cropland shows correlation coefficient value lower than 0.3. The proper vegetation and soil moisture conditions for SAR based soil moisture estimation are suggested through the results of the study. Future study, which utilizes additional ancillary vegetation data (vegetation height, vegetation type) is thought to be necessary.

Synthetic Aperture Radar (SAR)를 활용하여 토양수분을 산출 할 시 기존의 위성기반 자료에 비해 고해상도의 공간 자료를 생산할 수 있다. 고해상도의 광역 토양수분 자료는 기존의 위성 기반 토양수분 대비 보다 세밀한 지표면 토양수분 변동 관측이 가능하게 하므로, 산사태, 산불 및 홍수와 같은 자연재해 연구에 활용성이 뛰어나다. 하지만 SAR 신호인 후방산란계수는 토양수분 뿐만 아니라, 식생에 의한 영향도 포함하기 때문에 정확한 토양수분을 산정하기 위해서는 이러한 영향을 고려하는 단계가 요구된다. 본 연구에서는 한반도 중부의 농지, 산지, 및 초지의 식생조건 하에서 Sentinel-1 위성 SAR 자료를 활용하여 토양수분을 산정하기 위한 연구를 수행하였다. 식생의 영향을 고려하기 위해 대표적인 지표면 레이더 신호 산란 모형인 Water Cloud Model (WCM)을 사용하였으며, 식생 인자로 Radar Vegetation Index (RVI)를 활용하였다. 연구 지역으로는 토지피복도에 따라 농지와 초지, 산지 각각 2개 지역, 총 6개 대상 지역을 선정하였다. WCM의 매개변수 모의를 위해 지상 관측 토양수분 자료를 활용하였다. 관측 토양수분과의 검증 결과 초지, 산지, 농지 순으로 높은 정확도가 나타났으며, 특히 산지에서는 짙은 식생에도 불구하고 상관계수 값이 0.5 이상으로 나타난 반면 농지에서는 0.3 미만의 매우 낮은 값이 관측되었다. 연구 결과를 통해 다양한 식생 피복에서 SAR 기반 토양수분 산정에 적합한 관측 토양수분 조건을 제시 하였다. 향후 식생 높이, 식생 종류 등 과 융합한 연구가 수행된다면 보다 정확한 토양수분을 산정 할 수 있을 것으로 판단된다.

Keywords

References

  1. Ahmad, W., and Kim, D. (2019). "Estimation of flow in various sizes of streams using the Sentinel-1 Synthetic Aperture Radar (SAR) data in Han River Basin, Korea." International Journal of Applied Earth Observation and Geoinformation, Vol. 83, 101930. https://doi.org/10.1016/j.jag.2019.101930
  2. Ardila, J.P., Tolpekin, V., and Bijker, W. (2010). "Angular backscatter variation in L-band ALOS ScanSAR images of tropical forest areas." IEEE Geoscience and Remote Sensing Letters, Vol. 7, No. 4, pp. 821-825. https://doi.org/10.1109/LGRS.2010.2048411
  3. Attema, E.P.W., and Ulaby, F.T. (1978). "Vegetation modeled as a water cloud." Radio Science, Vol. 13, No. 2, pp. 357-364. https://doi.org/10.1029/RS013i002p00357
  4. Baghdadi, N., El Hajj, M., Zribi, M., and Bousbih, S. (2017). "Calibration of the water cloud model at C-band for winter crop fields and grasslands." Remote Sensing, Vol. 9, No. 9, p. 969. https://doi.org/10.3390/rs9090969
  5. Balenzano, A., Mattia, F., Satalino, G., Pauwels, V., and Snoeij, P. (2012). "SMOSAR algorithm for soil moisture retrieval using Sentinel-1 data." 2012 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Munich, Germany, pp. 1200-1203.
  6. Bao, Y., Lin, L., Wu, S., Deng, K. A.K., and Petropoulos, G.P. (2018). "Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model." International Journal of Applied Earth Observation and Geoinformation, Vol. 72, pp. 76-85. https://doi.org/10.1016/j.jag.2018.05.026
  7. Bartalis, Z., Wagner, W., Naeimi, V., Hasenauer, S., Scipal, K., Bonekamp, H., Julia, F., and Anderson, C. (2007). "Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT)." Geophysical Research Letters, Vol. 34, No. 20, L20401. https://doi.org/10.1029/2007GL031088
  8. Beaudoin, A., Le Toan, T., and Gwyn, Q.H.J. (1990). "SAR observations and modeling of the C-band backscatter variability due to multiscale geometry and soil moisture." IEEE Transactions on Geoscience and Remote Sensing, Vol. 28, No. 5, pp. 886-895. https://doi.org/10.1109/36.58978
  9. Bernard, R., Frezal, M. E., Vidal-Madjar, D., Guyon, D., and Riom, J. (1987). "Nadir looking airborne radar and possible applications to forestry." Remote Sensing of Environment, Vol. 21, No. 3, pp. 297-309. https://doi.org/10.1016/0034-4257(87)90014-9
  10. Bindlish, R., and Barros, A.P. (2001). "Parameterization of vegetation backscatter in radar-based, soil moisture estimation." Remote Sensing of Environment, Vol. 76, No. 1, pp. 130-137. https://doi.org/10.1016/S0034-4257(00)00200-5
  11. Bouman, B.A., and van Kasteren, H.W. (1990). "Ground-based X-band (3-cm wave) radar backscattering of agricultural crops. I. Sugar beet and potato; backscattering and crop growth." Remote Sensing of Environment, Vol. 34, No. 2, pp. 93-105. https://doi.org/10.1016/0034-4257(90)90101-Q
  12. Chapin, E., Chau, A., Chen, J., Heavey, B., Hensley, S., Lou, Y., Machuzak, R., and Moghaddam, M. (2012). "AirMOSS: An airborne P-band SAR to measure root-zone soil moisture." 2012 IEEE Radar Conference, IEEE, Atlanta, U.S., pp. 693-698.
  13. Choi, M., and Hur, Y. (2012). "A microwave-optical/infrared disaggregation for improving spatial representation of soil moisture using AMSR-E and MODIS products. Remote Sensing of Environment, Vol. 124, pp. 259-269. https://doi.org/10.1016/j.rse.2012.05.009
  14. Choi, M., and Jacobs, J.M. (2011). "Spatial soil moisture scaling structure during Soil Moisture Experiment 2005." Hydrological Processes, Vol. 25, No. 6, pp. 926-932. https://doi.org/10.1002/hyp.7877
  15. Choi, M., Jacobs, J.M., and Cosh, M.H. (2007). "Scaled spatial variability of soil moisture fields." Geophysical Research Letters, Vol. 34, No. 1, L01401. https://doi.org/10.1029/2006GL028247
  16. Crevier, Y., Pultz, T.J., Lukowski, T.I., and Toutin, T. (1996). "Temporal analysis of ERS-1 SAR backscatter for hydrology applications." Canadian journal of remote sensing, Vol. 22, No. 1, pp.65-76. https://doi.org/10.1080/07038992.1996.10874638
  17. Dabboor, M., Sun, L., Carrera, M. L., Friesen, M., Merzouki, A., McNairn, H., Powers, J., and Belair, S. (2019). "Comparative analysis of high-resolution soil moisture simulations from the Soil, Vegetation, and Snow (SVS) land surface model using SAR imagery over bare soil." Water, Vol. 11, No. 3, p. 542. https://doi.org/10.3390/w11030542
  18. De Zan, F., Parizzi, A., Prats-Iraola, P., and López-Dekker, P. (2013). "A SAR interferometric model for soil moisture." IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 1, pp. 418-425. https://doi.org/10.1109/TGRS.2013.2241069
  19. El Hajj, M., Baghdadi, N., Zribi, M., Belaud, G., Cheviron, B., Courault, D., and Charron, F. (2016). "Soil moisture retrieval over irrigated grassland using X-band SAR data." Remote Sensing of Environment, Vol. 176, pp. 202-218. https://doi.org/10.1016/j.rse.2016.01.027
  20. Gao, Q., Zribi, M., Escorihuela, M.J., and Baghdadi, N. (2017). "Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution." Sensors, Vol. 17, No. 9, p. 1966. https://doi.org/10.3390/s17091966
  21. Gherboudj, I., Magagi, R., Berg, A.A., and Toth, B. (2011). "Soil moisture retrieval over agricultural fields from multi-polarized and multi-angular RADARSAT-2 SAR data." Remote Sensing of Environment, Vol. 115, No. 1, pp. 33-43. https://doi.org/10.1016/j.rse.2010.07.011
  22. Graham, A.J., and Harris, R. (2003). "Extracting biophysical parameters from remotely sensed radar data: A review of the water cloud model." Progress in Physical Geography, Vol. 27, No. 2, pp. 217-229. https://doi.org/10.1191/0309133303pp378ra
  23. Heathman, G.C., Starks, P.J., Ahuja, L.R., and Jackson, T.J. (2003). "Assimilation of surface soil moisture to estimate profile soil water content." Journal of Hydrology, Vol. 279, No. 1-4, pp. 1-17. https://doi.org/10.1016/S0022-1694(03)00088-X
  24. Holtgrave, A.K., Roder, N., Ackermann, A., Erasmi, S., and Kleinschmit, B. (2020). "Comparing Sentinel-1 and-2 data and indices for agricultural land use monitoring." Remote Sensing, Vol. 12, No. 18, p. 2919. https://doi.org/10.3390/rs12182919
  25. Im, E.S., Kwon, W.T., and Bae, D.H. (2006). "A study on the regional climate change scenario for impact assessment on water resources." Proceedings of the Korea Water Resources Association Conference, KWRA, pp. 637-642.
  26. Jagdhuber, T., Hajnsek, I., and Papathanassiou, K.P. (2014). "An iterative generalized hybrid decomposition for soil moisture retrieval under vegetation cover using fully polarimetric SAR." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 8, pp. 3911-3922. https://doi.org/10.1109/JSTARS.2014.2371468
  27. Joseph, A.T., van der Velde, R., O'Neill, P.E., Lang, R.H., and Gish, T. (2008). "Soil moisture retrieval during a corn growth cycle using L-band (1.6 GHz) radar observations." IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 8, pp. 2365-2374. https://doi.org/10.1109/TGRS.2008.917214
  28. Kasischke, E.S., Smith, K.B., Bourgeau-Chavez, L.L., Romanowicz, E.A., Brunzell, S., and Richardson, C.J. (2003). "Effects of seasonal hydrologic patterns in south Florida wetlands on radar backscatter measured from ERS-2 SAR imagery." Remote Sensing of Environment, Vol. 88, No. 4, pp. 423-441. https://doi.org/10.1016/j.rse.2003.08.016
  29. Kim, K., and Lee, Y. (2020). "Analysis on the characteristics of soil water storage by the precipitation in the Sulma Basin." Proceedings of the Korea Water Resources Association Conference, KWRA, pp. 269-269.
  30. Kim, S., Jo, H.B., Lee, S.O., and Choi, M. (2010). "The study of application of drought index using measured soil moisture at KoFlux Tower." Journal of The Korean Society of Civil Engineers, Vol. 30, No. 6B, pp. 541-549.
  31. Kim, Y., Jackson, T., Bindlish, R., Lee, H., and Hong, S. (2011). "Radar vegetation index for estimating the vegetation water content of rice and soybean." IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 4, pp. 564-568. https://doi.org/10.1109/LGRS.2011.2174772
  32. Koyama, C.N., Korres, W., Fiener, P., and Schneider, K. (2010). "Variability of surface soil moisture observed from multi-temporal C-band synthetic aperture radar and field data." Vadose Zone Journal, Vol. 9, No. 4, pp. 1014-1024. https://doi.org/10.2136/vzj2009.0165
  33. Kumar, K., Suryanarayana Rao, H.P., and Arora, M.K. (2015). "Study of water cloud model vegetation descriptors in estimating soil moisture in Solani catchment." Hydrological Processes, Vol. 29, No. 9, pp. 2137-2148. https://doi.org/10.1002/hyp.10344
  34. Lee, J., Choi, M., Cho, E., and Kim, D. (2015). "Performance of conditional merging spatial interpolation technique combining AMSR-E soil moisture and In-situ soil moisture data over the Korean peninsula." Proceedings of the Korea Water Resources Association Conference, KWRA, pp. 185-185.
  35. Le Hegarat-Mascle, S., Zribi, M., Alem, F., Weisse, A., and Loumagne, C. (2002). "Soil moisture estimation from ERS/SAR data: Toward an operational methodology." IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 12, pp. 2647-2658. https://doi.org/10.1109/TGRS.2002.806994
  36. Lievens, H., and Verhoest, N.E. (2011). "On the retrieval of soil moisture in wheat fields from L-band SAR based on water cloud modeling, the IEM, and effective roughness parameters." IEEE Geoscience and Remote Sensing Letters, Vol. 8, No. 4, pp. 740-744. https://doi.org/10.1109/LGRS.2011.2106109
  37. Mahdavi, S., Maghsoudi, Y., and Amani, M. (2017). "Effects of changing environmental conditions on synthetic aperture radar backscattering coefficient, scattering mechanisms, and class separability in a forest area." Journal of Applied Remote Sensing, Vol. 11, No. 3, 036015.
  38. Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J.M., McNairn, H., and Rao, Y.S. (2020). "Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data." Remote Sensing of Environment, Vol. 247, 111954. https://doi.org/10.1016/j.rse.2020.111954
  39. Mladenova, I.E., Jackson, T.J., Bindlish, R., and Hensley, S. (2012). "Incidence angle normalization of radar backscatter data." IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 3, pp. 1791-1804. https://doi.org/10.1109/TGRS.2012.2205264
  40. Moran, M.S., Hymer, D.C., Qi, J., and Sano, E.E. (2000). "Soil moisture evaluation using multi-temporal synthetic aperture radar (SAR) in semiarid rangeland." Agricultural and Forest Meteorology, Vol. 105, No. 1-3, pp. 69-80. https://doi.org/10.1016/S0168-1923(00)00189-1
  41. Paloscia, S., Pettinato, S., Santi, E., Notarnicola, C., Pasolli, L., and Reppucci, A.J.R.S.O.E. (2013). "Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation." Remote Sensing of Environment, Vol. 134, pp. 234-248. https://doi.org/10.1016/j.rse.2013.02.027
  42. Pierdicca, N., Castracane, P., and Pulvirenti, L. (2008). "Inversion of electromagnetic models for bare soil parameter estimation from multifrequency polarimetric SAR data." Sensors, Vol. 8, No. 12, pp. 8181-8200. https://doi.org/10.3390/s8128181
  43. Rotzer, K., Montzka, C., Entekhabi, D., Konings, A.G., McColl, K. A., Piles, M., and Vereecken, H. (2017). "Relationship between vegetation microwave optical depth and cross-polarized backscatter from multiyear aquarius observations." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 10, No. 10, pp. 4493-4503. https://doi.org/10.1109/JSTARS.2017.2716638
  44. Saatchi, S.S., and McDonald, K.C. (1997). "Coherent effects in microwave backscattering models for forest canopies." IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 4, pp. 1032-1044. https://doi.org/10.1109/36.602545
  45. Sahebi, M.R., Bonn, F., and Gwyn, Q.H.J. (2003). "Estimation of the moisture content of bare soil from RADARSAT-1 SAR using simple empirical models." International Journal of Remote Sensing, Vol. 24, No. 12, pp. 2575-2582. https://doi.org/10.1080/0143116031000072948
  46. Saradjian, M.R., and Hosseini, M. (2011). "Soil moisture estimation by using multipolarization SAR image." Advances in Space Research, Vol. 48, No. 2, pp. 278-286. https://doi.org/10.1016/j.asr.2011.03.029
  47. Shi, J., Wang, J., Hsu, A.Y., O'Neill, P.E., and Engman, E.T. (1997). "Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data." IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 5, pp. 1254-1266. https://doi.org/10.1109/36.628792
  48. Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B., Floury, N., Brown, M., Traver, I.N., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L'Abbate, M., Croci, R., Pietropaolo, A., Huchler, M., and Rostan, F. (2012). "GMES Sentinel-1 mission." Remote Sensing of Environment, Vol. 120, pp. 9-24. https://doi.org/10.1016/j.rse.2011.05.028
  49. Vreugdenhil, M., Wagner, W., Bauer-Marschallinger, B., Pfeil, I., Teubner, I., Rüdiger, C., and Strauss, P. (2018). "Sensitivity of Sentinel-1 backscatter to vegetation dynamics: An Austrian case study." Remote Sensing, Vol. 10, No. 9, p. 1396. https://doi.org/10.3390/rs10091396
  50. Wang, L., He, B., Bai, X., and Xing, M. (2019). "Assessment of different vegetation parameters for parameterizing the coupled water cloud model and advanced integral equation model for soil moisture retrieval using time series Sentinel-1A data." Photogrammetric Engineering & Remote Sensing, Vol. 85, No. 1, pp. 43-54. https://doi.org/10.14358/PERS.85.1.43
  51. Xu, C., Qu, J.J., Hao, X., and Wu, D. (2020). "Monitoring surface soil moisture content over the vegetated area by integrating optical and SAR satellite observations in the permafrost region of tibetan plateau. Remote Sensing, Vol. 12, No. 1, p. 183. https://doi.org/10.3390/rs12010183
  52. Zribi, M., Gorrab, A., Baghdadi, N., Lili-Chabaane, Z., and Mougenot, B. (2013). "Influence of radar frequency on the relationship between bare surface soil moisture vertical profile and radar backscatter." IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 4, pp. 848-852. https://doi.org/10.1109/LGRS.2013.2279893