• Title/Summary/Keyword: critical thickness

Search Result 891, Processing Time 0.028 seconds

마모수명평가를 위한 TiN 경질박막의 마찰 및 마모특성에 관한 연구 (A Study on Friction and Wear of TiN Film for the Wear-life Prediction)

  • 정기훈;이영제
    • Tribology and Lubricants
    • /
    • 제13권3호
    • /
    • pp.28-32
    • /
    • 1997
  • Indentation, scratch and sliding tests were carried out in this paper to predict the critical loads and the failure modes of TiN-coated specimen. The test specimens were S20C steels with three different substrate hardness, roughness and coating thickness. The scratch test shows that the coating thickness has more dominant effect on the critical load of coated disk than the hardness and the roughness. Using the percent contact load, the ratio of sliding load to the critical scratch load, the cycles to failure are measured to predict the wear-life of TiN film. On the wear-life diagram the percent loads and the cycle to failure show the good linear relation on semi-log coordinate. With decreasing loads, the diagram shows the wear-limit at which the coated disk survives more than 4000 cycles.

Critical thermal buckling analysis of porous FGP sandwich plates under various boundary conditions

  • Abdelhak Zohra;Benferhat Rabia;Hassaine Daouadji Tahar
    • Structural Engineering and Mechanics
    • /
    • 제87권1호
    • /
    • pp.29-46
    • /
    • 2023
  • Critical thermal buckling of functionally graded porous (FGP) sandwich plates under various types of thermal loading is considered. It is assumed that the mechanical and thermal nonhomogeneous properties of FGP sandwich plate vary smoothly by distribution of power law across the thickness of sandwich plate. In this paper, porosity defects are modeled as stiffness reduction criteria and included in the rule of mixture. The thermal environments are considered as uniform, linear and nonlinear temperature rises. The critical buckling temperature response of FGM sandwich plates has been analyzed under various boundary conditions. By comparing several numerical examples with the reference solutions, the results indicate that the present analysis has good accuracy and rapid convergence. Further, the effects of various parameters like distribution shape of porosity, sandwich combinations, aspect ratio, thickness ratio, boundary conditions on critical buckling temperature of FGP sandwich plate have been studied in this paper.

연속 연료공급식 MOCVD법으로 증착시킨 YBCO 박막의 증착조건 (Deposition condition of YBCO films by continuous source supplying MOCVD method)

  • 김호진;주진호;최준규;전병혁;김찬중
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권3호
    • /
    • pp.6-11
    • /
    • 2004
  • YBa$_2$Cu$_3$$O_{7-x}$ (YBCO) films were deposited on MgO(100) and SrTiO$_3$(100) single crystal substrates by cold-wall type MOCVD method using continuous source supplying system. Under the deposition temperature of 740∼76$0^{\circ}C$, c-axis oriented YBCO films were obtained. In case of the YBCO films deposited on MgO (100) single crystal substrate, the critical temperature (T$_{c}$) was under 81 K regardless of the deposition conditions, whereas T$_{c}$ of the YBCO films deposited on SrTiO$_3$(100) single crystal substrate was 83∼84 K. The critical current (I$_{c}$) of the YBCO film deposited on SrTiO$_3$(100) single crystal substrate for 30 min was 49 A/cm-width and the critical current density (J$_{c}$) was 0.82 MA/$\textrm{cm}^2$ to film thickness of 0.6 ${\mu}{\textrm}{m}$. I$_{c}$ increased to 84.4 A/cm-width as the deposition time increased to 50 min, but J$_{c}$ decreased to 0.53 MA/$\textrm{cm}^2$ to film thickness of 1.8 ${\mu}{\textrm}{m}$.rm}{m}$.

TFA-MOD법을 이용한 YBCO 박막의 열처리 온도와 두께의 영향 (Effects of the Heat Treatment Temperature and Thickness of YBCO Film Fabricated by TFA-MOD Method)

  • 장석헌;임준형;이진성;윤경민;김규태;주진호;김찬중;나완수
    • 한국전기전자재료학회논문지
    • /
    • 제19권5호
    • /
    • pp.467-476
    • /
    • 2006
  • We fabricated the YBCO films on LAO substrate using the TFA-MOD method and evaluated the effects of heat treatment temperature and film thickness on the microstructure, degree of texture, and critical properties. The calcining and firing were peformed at the temperature range of $370^{\circ}C-460^{\circ}C\;and\;750^{\circ}C-800^{\circ}C$, respectively. For the films fired at $775^{\circ}C$ after calcining at $400^{\circ}C-430^{\circ}C$showed highest critical temperature (Tc-onset) of 89.5 K and critical current (Ic) of 40A/cm-width which corresponds to critical current density (Jc) of $1.8MA/cm^2$. The highest critical properties are probably attributed to the formation of purer YBCO phase, stronger biaxial texture, and higher oxygen content, according to the XRD, pole-figure, SEM, Raman analysis. From the multi-coated films, the Ic increased from 39 to 169 A/cm-width as the coating repeated to four times, while the corresponding Jc was measured from once to be in the range of $0.8-1.2MA/cm^2$. Both Ic and Jc degraded as the coating repeated further, indicating that the optimum thickness is in the range of $1.0{\mu}m-1.7{\mu}m$.

DIP 기법을 이용한 조립토의 전단영역 크기 분석 (The Thickness of Shear Zone in Granular Materials Using Digital Image Processing)

  • 민덕기;김치영
    • 한국지반공학회논문집
    • /
    • 제22권8호
    • /
    • pp.89-97
    • /
    • 2006
  • 본 논문은 DIP(digital image processing)기법을 이용하여 조립토의 직접전단실험시 발생하는 전단영역의 크기에 대해 상대밀도와 전단하중이 미치는 영향에 대해 분석하였다. 전단변형 후 DIP기법을 적용하여 전단영역의 측정을 위해 적절한 고화제(epoxy resin)를 선택하여 4단계의 초기 상대밀도를 가진 시편이 준비되었고, 각각의 시료에 대해 전단시험 및 고화제 주입, 시편제작, 이미지 분석 등의 단계를 거쳐 전단영역의 크기가 측정하였다. 전단영역의 크기 측정 결과, 시료의 초기 삿대밀도가 증가할수록 전단영역의 크기도 증가하고, 전단하중 재하 중 전단영역 내부의 간극비는 변하지만 전단영역의 크기는 변하지 않는 것을 확인할 수 있었다. 또한, 시편의 초기 상대밀도가 한계상태 이전에는 상대밀도에 따라 전단영역의 크기가 거의 변하지 않으나 한계상태를 지나 조밀한 상태가 된 경우 상대밀도가 증가함에 따라 전단영역의 크기가 크게 증가하는 것으로 나타났다.

모서리부 차량 다축하중에 의한 콘크리트 도로 포장의 응력 분포 특성 (Stress Distribution of Concrete Pavements under Multi-Axle Vehicle Loads Applied at Pavement Edges)

  • 김성민;조병휘;이상훈
    • 한국도로학회논문집
    • /
    • 제8권4호
    • /
    • pp.13-24
    • /
    • 2006
  • 콘크리트 포장은 모서리(Edge) 부분에 차량 하중이 작용할 때 큰 응력을 받게 되며 이러한 응력은 포장의 거동 및 장기 공용성에 영향을 미친다. 따라서 본 연구는 콘크리트 포장의 유한요소 모델을 사용하여 콘크리트 포장의 모서리 부분에 복륜 단축, 복륜 복축, 복륜 삼축 등 복륜 다축 하중의 한쪽 차륜이 접하여 작용할 때 포장의 응력 분포와 최대 응력을 분석하기 위하여 수행되었다. 우선 종방향과 횡방향을 따라 응력의 분포 형태를 분석하였고, 콘크리트 슬래브의 두께, 콘크리트 탄성계수, 지반 탄성계수 등이 응력 분포에 미치는 영향을 분석하였다. 또한 하중 접지면적과 연관된 하중 접지압의 변화에 따른 콘크리트 포장의 응력 분포도 분석하였다. 그리고 콘크리트 포장에서 최대 응력이 어느 위치에서 발생하는지에 대한 연구도 수행하였다. 연구 결과 모서리부 하중에 의한 콘크리트 포장의 최대 응력은 콘크리트의 탄성계수가 증가할수록, 슬래브의 두께가 감소할수록, 그리고 지반 탄성계수가 감소할수록 증가하였다. 하중 접지압의 변화에 따른 최대 응력은 콘크리트 탄성계수와 지반 탄성계수의 크기에 따라서는 거의 일정한 변화를 보였으나 슬래브 두께는 얇아질수록 접지압에 따른 최대 응력의 변화가 뚜렷이 보였다. 최대 응력이 생기는 횡방향의 위치는 콘크리트 탄성계수와 지반 탄성계수에는 무관하게 일정하다. 하지만 슬래브의 두께는 두꺼워질수록 최대 응력의 횡방향 상 위치가 모서리에서 내부로 이동한다. 종방향의 최대 응력이 생기는 위치는 단축과 복축 하중일 경우는 축의 위치이며, 삼축 하중일 경우에는 콘크리트 탄성계수나 슬래브 두께가 증가하던지 또는 지반 탄성계수가 감소하면 최대 응력이 생기는 종방향 상 위치가 양쪽 바깥축에서 중간축의 위치로 바뀌게 된다.

  • PDF

STI CMP후 Topology에 따른 Gate Etch, Transistor 특성 변화 (Property variation of transistor in Gate Etch Process versus topology of STI CMP)

  • 김상용;정헌상;박민우;김창일;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.181-184
    • /
    • 2001
  • Chemical Mechanical Polishing(CMP) of Shallow Trench Isolation(STD structure in 0.18 m semiconductor device fabrication is studied. CMP process is applied for the STI structure with and without reverse moat pattern and End Point Detection (EPD) method is tested. To optimize the transistor properties related metal 1 parameters. we studied the correlation between CMP thickness of STI using high selectivity slurry. DOE of gate etch recipe, and 1st metal DC values. Remaining thickness of STI CMP is proportional to the thickness of gate-etch process and this can affect to gate profile. As CMP thickness increased. the N-poly foot is deteriorated. and the P-Poly Noth is getting better. If CD (Critical Dimension) value is fixed at some point,, all IDSN/P values are in inverse proportional to CMP thickness by reason of so called Profile Effect. Weve found out this phenomenon in all around DOE conditions of Gate etch process and we also could understand that it would not have any correlation effects between VT and CMP thickness in the range of POE 120 sec conditions. As CMP thickness increased by $100\AA$. 3.2 $u\AA$ of IDSN is getting better in base 1 condition. In POE 50% condition. 1.7 $u\AA$ is improved. and 0.7 $u\AA$ is improved in step 2 condition. Wed like to set the control target of CD (critical dimension) in gate etch process which can affect Idsat, VT property versus STI topology decided by CMP thickness. We also would like to decide optimized thickness target of STI CMP throughout property comparison between conventional STI CMP with reverse moat process and newly introduced STI CMP using high selectivity slurry. And we studied the process conditions to reduce Gate Profile Skew of which source known as STI topology by evaluation of gate etch recipe versus STI CMP thickness.

  • PDF

STI CMP후 Topology에 따른 Gate Etch, Transistor 특성 변화 (Property variation of transistor in Gate Etch Process versus topology of STI CMP)

  • 김상용;정헌상;박민우;김창일;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.181-184
    • /
    • 2001
  • Chemical Mechanical Polishing(CMP) of Shallow Trench Isolation(STI) structure in 0.18 m semiconductor device fabrication is studied. CMP process is applied for the STI structure with and without reverse moat pattern and End Point Detection (EPD) method is tested. To optimize the transistor properties related metal 1 parameters, we studied the correlation between CMP thickness of STI using high selectivity slurry, DOE of gate etch recipe, and 1st metal DC values. Remaining thickness of STI CMP is proportional to the thickness of gate-etch process and this can affect to gate profile. As CMP thickness increased, the N-poly foot is deteriorated, and the P-Poly Noth is getting better. If CD (Critical Dimension) value is fixed at some point, all IDSN/P values are in inverse proportional to CMP thickness by reason of so called Profile Effect. Weve found out this phenomenon in all around DOE conditions of Gate etch process and we also could understand that it would not have any correlation effects between VT and CMP thickness in the range of POE 120 sec conditions. As CMP thickness increased by 100 ${\AA}$, 3.2 u${\AA}$ of IDSN is getting better in base 1 condition. In POE 50% condition, 1.7 u${\AA}$ is improved, and 0.7 u${\AA}$ is improved in step 2 condition. Wed like to set the control target of CD (critical dimension) in gate etch process which can affect Idsat, VT property versus STI topology decided by CMP thickness. We also would like to decide optimized thickness target of STI CMP throughout property comparison between conventional STI CMP with reverse moat process and newly introduced STI CMP using high selectivity slurry. And we studied the process conditions to reduce Gate Profile Skew of which source known as STI topology by evaluation of gate etch recipe versus STI CMP thickness.

  • PDF

열연사상 압연시 스케일 결함발생에 미치는 산화피막 두께의 영향 (The Effect of Oxide Layer Thickness to the Scale Defects Generation during Hot finish Rolling)

  • 민경준
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.412-422
    • /
    • 1999
  • Scale defects generated on the strip surface in a tandem finishing mill line are collected from the strip trapped among the production mills by freezing the growing scale on the strip by the melt glass coating and shutting down the line simultaneously. The samples observed of its cross sectional figure showed the process of scale defect formation where the defects are formed at the base metal surface by thicker oxidized scale during each rolling passes. The properties of the oxidized layer growth both at rolling and inter-rolling are detected down sized rolling test simulating carefully the rolling condition of the production line. The thickness of the oxidized layer at each rolling pass are simulated numerically. The critical scale thickness to avoid the defect formation is determined through the expression of mutual relation between oxidized layer thickness and the lanks of the strip called quality for the scale defects. The scale growth of scale less than the critical thickness and also to keep the bulk temperature tuning the water flow rate and cooling time appropriately. Two units of Inerstand Cooler are designed and settled among the first three stands in the production line. Two units of scale defect is counted from the recoiled strip and the results showed distinct decrease of the defects comparing to the conventionaly rolled products.

  • PDF