• Title/Summary/Keyword: critical state

Search Result 1,830, Processing Time 0.025 seconds

Inter- and Intra-granular Critical Current in $Bi_{1.4}Pb_{0.6}Sr_2Ca_2Cu_{3.6}O_x$ Superconducting Oxide

  • Choy, Jin-Ho;Kim, Seung-Joo;Park, J.C.;Frohlich, K.;Dordor, P.;Grenier, J.C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.6
    • /
    • pp.560-563
    • /
    • 1990
  • A.c. susceptibility for $Bi_{1.4}Pb_{0.6}Sr_2Ca_2Cu_{3.6}O_x$ superconductor is measured as a function of temperature at different value of a.c. magnetic field amplitude. Two transition steps are attributed to the intergranular and intragranular properties. Based on Bean's critical state model, intergranular critical current density, $J_c^{gb}$ (11 $A/cm^2$ at 77 K) and intragranular critical current density, $J_c^g (7{\times}10^3\;A/cm^2$ at 100 K) are estimated. The low values of $J_c^{gb}$and $J_c^g$ reflect a poor nature of coupling between grains and the low pinning force density of intragrain in $Bi_{1.4}Pb_{0.6}Sr_2Ca_2Cu_{3.6}O_x$ superconductor.

Critical earthquake loads for SDOF inelastic structures considering evolution of seismic waves

  • Moustafa, Abbas;Ueno, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.1 no.2
    • /
    • pp.147-162
    • /
    • 2010
  • The ground acceleration measured at a point on the earth's surface is composed of several waves that have different phase velocities, arrival times, amplitudes, and frequency contents. For instance, body waves contain primary and secondary waves that have high frequency content and reach the site first. Surface waves are composed of Rayleigh and Love waves that have lower phase velocity, lower frequency content and reach the site next. Some of these waves could be of more damage to the structure depending on their frequency content and associated amplitude. This paper models critical earthquake loads for single-degree-of-freedom (SDOF) inelastic structures considering evolution of the seismic waves in time and frequency. The ground acceleration is represented as combination of seismic waves with different characteristics. Each seismic wave represents the energy of the ground motion in certain frequency band and time interval. The amplitudes and phase angles of these waves are optimized to produce the highest damage in the structure subject to explicit constraints on the energy and the peak ground acceleration and implicit constraints on the frequency content and the arrival time of the seismic waves. The material nonlinearity is modeled using bilinear inelastic law. The study explores also the influence of the properties of the seismic waves on the energy demand and damage state of the structure. Numerical illustrations on modeling critical earthquake excitations for one-storey inelastic frame structures are provided.

Aerodynamic stability of iced stay cables on cable-stayed bridge

  • Li, Shouying;Wu, Teng;Huang, Tao;Chen, Zhengqing
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.253-273
    • /
    • 2016
  • Ice accretions on stay cables may result in the instable vibration of galloping, which would affect the safety of cable-stayed bridges. A large number of studies have investigated the galloping vibrations of transmission lines. However, the obtained aerodynamics in transmission lines cannot be directly applied to the stay cables on cable-stayed bridges. In this study, linear and nonlinear single degree-of-freedom models were introduced to obtain the critical galloping wind velocity of iced stay cables where the aerodynamic lift and drag coefficients were identified in the wind tunnel tests. Specifically, six ice shapes were discussed using section models with geometric scale 1:1. The results presented obvious sudden decrease regions of the aerodynamic lift coefficient for all six test models. Numerical analyses of iced stay cables associated to a medium-span cable-stayed bridge were carried out to evaluate the potential galloping instability. The obtained nonlinear critical wind velocity for a 243-meter-long stay cable is much lower than the design wind velocity. The calculated linear critical wind velocity is even lower. In addition, numerical analyses demonstrated that increasing structural damping could effectively mitigate the galloping vibrations of iced stay cables.

Measurement of Localized Corrosion Resistance in Additively Manufactured Ti-6Al-4V Alloys Using Electrochemical Critical Localized Corrosion Temperature (E-CLCT) versus Electrochemical Critical Localized Corrosion Potential (E-CLCP) (적층가공 (3D 프린팅) Ti-6Al-4V합금의 국부부식 저항성 평가를 위한 임계국부부식온도와 임계국부부식전위 측정방법의 비교)

  • Seo, Dong-Il;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.37-43
    • /
    • 2021
  • Additively manufactured (AM) Ti-6Al-4V alloys exhibit a dominant acicular martensite phase (α'), which is characterized by an unstable energy state and highly localized corrosion susceptibility. Electrochemical critical localized corrosion temperature (E-CLCT, ISO 22910: 2020) and electrochemical critical localized corrosion potential (E-CLCP, ISO AWI 4631: 2021) were measured to analyze the localized corrosion resistance of the AM Ti-6Al-4V alloy. Although E-CLCP was measured under mild corrosive conditions such as human body, the validity of evaluating localized corrosion resistance of AM titanium alloys was demonstrated by comparison with E-CLCT. However, the mechanisms of resistance to localized corrosion on the as-received and heat-treated AM Ti-6Al-4V alloys under E-CLCT and E-CLCP differ at various temperatures because of differences in properties under localized corrosion and repassivation. The E-CLCT is mainly measured for initiation of localized corrosion on the AM titanium alloys based on temperature, whereas the E-CLCP yields repassivation potential of re-generated passive films of AM titanium alloys after breaking down.

Influence of Critical Point of Hydrocarbon Jet Injected into Near-Critical Environment on Injection Behavior (근임계 환경으로 분사되는 탄화수소 제트의 임계점이 분사거동에 미치는 영향)

  • Yoon, Taekyung;Shin, Dongsoo;Lee, Keonwoong;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.32-39
    • /
    • 2018
  • Supercritical injection behavior of liquid hydrocarbon compounds, which are used as main components of propellant fuel, was analyzed. Decane and Methylcyclohexane (MCH) with different critical points were selected as experimental fluid and Shadowgraphy technique was used. Decane and MCH behave differently in the initial state under the subcritical condition. However, near the critical point, the enthalpy of evaporation became close to 0, so that phase change into supercritical fluid occurred, not vaporization process, and no breakup of both fluids occurred.

SEMICLASSICAL ASYMPTOTICS OF INFINITELY MANY SOLUTIONS FOR THE INFINITE CASE OF A NONLINEAR SCHRÖDINGER EQUATION WITH CRITICAL FREQUENCY

  • Aguas-Barreno, Ariel;Cevallos-Chavez, Jordy;Mayorga-Zambrano, Juan;Medina-Espinosa, Leonardo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.241-263
    • /
    • 2022
  • We consider a nonlinear Schrödinger equation with critical frequency, (P𝜀) : 𝜀2∆v(x) - V(x)v(x) + |v(x)|p-1v(x) = 0, x ∈ ℝN, and v(x) → 0 as |x| → +∞, for the infinite case as described by Byeon and Wang. Critical means that 0 ≤ V ∈ C(ℝN) verifies Ƶ = {V = 0} ≠ ∅. Infinite means that Ƶ = {x0} and that, grossly speaking, the potential V decays at an exponential rate as x → x0. For the semiclassical limit, 𝜀 → 0, the infinite case has a characteristic limit problem, (Pinf) : ∆u(x)-P(x)u(x) + |u(x)|p-1u(x) = 0, x ∈ Ω, with u(x) = 0 as x ∈ Ω, where Ω ⊆ ℝN is a smooth bounded strictly star-shaped region related to the potential V. We prove the existence of an infinite number of solutions for both the original and the limit problem via a Ljusternik-Schnirelman scheme for even functionals. Fixed a topological level k we show that vk,𝜀, a solution of (P𝜀), subconverges, up to a scaling, to a corresponding solution of (Pinf ), and that vk,𝜀 exponentially decays out of Ω. Finally, uniform estimates on ∂Ω for scaled solutions of (P𝜀) are obtained.

Critical Strengthening Ratio of CFRP Plate Using Probability and Reliability Analysis for Concrete Railroad Bridge Strengthened by NSM (확률.신뢰도 기법을 적용한 CFRP 플레이트 표면매립보강 콘크리트 철도교의 임계보강비 산정)

  • Oh, Hong-Seob;Sun, Jong-Wan;Oh, Kwang-Chin;Sim, Jong-Sung;Ju, Min-Kwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.681-688
    • /
    • 2009
  • The railroad bridges have been usually experienced by vibration and impact in service state. With this reason, it is important that the effective strengthening capacity should be considered to resist the kind of service loading. In this study, NSM strengthening technique is recommended for the concrete railroad bridge because of its better effective resistance for dynamic loading condition and strengthening cost than the conventional externally bonded strengthening using fiber sheet. However, to widely apply NSM method for the concrete railroad bridge, it needs that the strengthening ratio has to be reasonably evaluated with geometrical and material uncertainties, especially for the concrete bridge under long-term service state without the apparent design history and detail information such as concrete compressive strength, reinforcing ratio, railroad characteristics. The purpose of this study is to propose the critical strengthening ratio of CFRP plate for the targeted concrete railroad bridge with uncertainties of deterioration of the structures. To do this, Monte Carlo Simulation (MCS) for geometrical and material uncertainties have been applied so that this approach may bring the reasonable strengthening ratio of CFRP plate considering probabilistic uncertainties for the targeted concrete railroad bridge. Finally, the critical strengthening ratio of NSM strengthened by CFRP plate is calculated by using the limit state function based on the target reliability index of 3.5.

Numerical Studies on the Structural-health Evaluation of Subway Stations based on Statistical Pattern Recognition Techniques (패턴인식 기반 역사 구조건전성 평가기법 개발을 위한 수치해석 연구)

  • Shin, Jeong-Ryol;An, Tae-Ki;Lee, Chang-Gil;Park, Seung-Hee
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1735-1741
    • /
    • 2011
  • The safety of station structures among railway infrastructures should be considered as a top priority because hundreds of thousands passengers a day take a subway. The station structures, which have been being operated since the 1970s, are especially vulnerable to the earthquake and long-term vibrations such as ambient train vibrations as well. This is why the structural-health monitoring system of station structures should be required. For these reason, Korean government has made an effort to develop the structural health-monitoring system of them, which can evaluate the health-state of station structures as well as can monitor the vulnerable structural members in real-time. Then, through the monitoring system, the vulnerable structural members could be retrofitted. For the development of health-state evaluation method for station structures with the real-time sensing data measured in the fields, authors carried out the numerical simulations to develop evaluation algorithms based on statistical pattern recognition techniques. In this study, the dynamic behavior of Chungmuro station in Seoul was numerically analyzed and then critical members were chosen. Damages were artificially simulated at the selected critical members of the numerical model. And, the supervised and unsupervised learning based pattern recognition algorithms were applied to quantify and localize the structural defects.

  • PDF

A Constitutive Model for Cemented Clay in a Critical State Framework (한계상태이론을 이용한 시멘트 고화처리 점토에 대한 구성 모델)

  • Lee, Song;Lee, Kyu-Hwan;Yi, Chang-Tok;Jung, Dae-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.1
    • /
    • pp.119-129
    • /
    • 2001
  • 연약지반 개량을 위한 시멘트의 사용은 깊은 심도의 점토 지반을 개량하는데 일반적으로 사용되는 기술이 되었다. 시멘트는 지반의 강도를 증가시키고 압축성을 감소시키는 역할을 한다. 시멘트-흙 혼합물의 강도 증가에는 여러 가지 요소가 있는데 이중 대표적인 것은 시멘트량, 흙의 종류, 함수비, 양생시간 등을 들 수 있다. 시멘트 첨가량이 적은 경우, 전단 강도증가는 기본적으로 시멘테이션 효과로 인한 점착력의 증가에 의한 입자들간의 마찰력으로부터 발생한다. 이러한 거동은 과압밀된 흙의 거동과 유사함을 볼 수 있다. 시멘트량이 많은 경우, 강도 증가의 주원인은 입자간의 물리적 결합에 기인하는데 이는 연약한 암석과 비슷한 거동을 한다. 시멘트 고화처리 흙의 응력-변형 거동을 분석하기 위해 한계상태 이론을 적용하였다. 그리고, 토립자간의 시멘테이션 효과를 반영하기 위해 새로운 한계상태 파라메타를 도입하였으며 시멘트 고화처리 점토의 거동을 분석하기 위한 새로운 한계상태 모델을 제시하였다.

  • PDF

A Study on the Bending Strength of Internal Gear-With investigation of Stress State around Pitch Point- (내접치차의 굽힘강도에 관한 연구-피지점 부근의 응력상태 파악을 포함하여-)

  • 정태형;변준형;이청신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1126-1133
    • /
    • 1994
  • When designing an internal gear. the bending strength around pitch point as well as that at tooth root fillet should be considered because the bending stress around pitch point may occur as high as that at tooth root fillet. In this study, including stress state around pitch point, the bending strength (tensile side and compressive side) of internal gear tooth is investigated by the use of the finite element method(FEM) with regarding many influencing factors of cutter and gear geometries. Then, the critical sections around pitch point and at tooth root fillet are determined, and the simple formulae based on nominal stresses(bending, compressive, and shear) are derived for the calculations of actual stresses as the functions of tooth thicknesses and radii of curvatures of involute and fillet curve at those critical sections. The stresses calculated by the formulae agree well with those by the FEM. And the bending stresses around pitch point and at tooth root are easily estimated by the use of those formulae, therefore, those formulae are useful for the purpose of the design or the bending strength estimation of internal gear.