• Title/Summary/Keyword: critical sliding surface

Search Result 35, Processing Time 0.02 seconds

Location determining method of critical sliding surface of fillings in a karst cave of tunnel

  • Lin, P.;Li, S.C.;Xu, Z.H.;Huang, X.;Pang, D.D.;Wang, X.T.;Wang, J.
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.415-421
    • /
    • 2018
  • A location determining method is proposed for critical sliding surface in the stability analysis of the filling materials in karst caves. First, a preliminary location of the sliding surface is determined based on simulation results which includes displacement contour and plastic zone. The sliding surface will locate on the bottom contact interface when the friction angle is relative small. However, a weakened contact interface always becomes the critical sliding surface no matter what the friction angle is. Then when the friction angle becomes larger, the critical sliding surface inside fillings can be determined by a parabola, the coefficient of which increases linearly with the friction angle under the same cohesion. Finally, the critical sliding surface approximately remains unchanged with friction angle. The influence of cohesion is similar to that of friction angle. Although affected by shape, size or position of the karst cave, the critical sliding surface mainly depends on both friction angle and cohesion. Thus, this method is always useful in determining the critical sliding surface.

A Study on the surface hardening by repeated sliding contact (반복 미끄럼 접촉에 의한 표면층의 경화에 대한 연구)

  • 박준목;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.80-88
    • /
    • 1997
  • Repeated sliding contact wear test was performed with copper specimens to obtain the relationship between wear and surface hardening. Wear surface and wear track section were observed by optical microscopy. Wear volume and micro-vikers hardness of sublayer below wear surface were obtained. These results suggested that wear mechanism depended on contact load than sliding velocity. Therefore wear mechanism was abrasive wear within critical contact load and adhesive wear over critical contact load. Wear rate increased with contact load, sliding distance but decreased with sliding velocity. Surface hardening increased with sliding velocity and sliding distance but decreased with contact load.

  • PDF

Wear Transition during Sliding in Glass (유리에서 미끄럼시의 마모천이)

  • 조성재;방건웅;김종집;문한규
    • Tribology and Lubricants
    • /
    • v.5 no.2
    • /
    • pp.83-86
    • /
    • 1989
  • A wear transition mechanism during sliding in glass has been observed. Disk specimens of sodalime-silicate glass were slid against AISI 52100 steel with paraffin oil as lubricant. Observations of the micrrx structural change on the worn surface showed that semi-circular cone cracks (SCCCs) were suddenly produced after a certain critical sliding time. These SCCCs brought about the severe damage in the form of extensive microchipping during further sliding. It was shown that the abrupt appearance of the SCCCs is attributable to the grooves formed during sliding, which act as surface flaws.

A Study on the Formation and the Tribological Role of Mass Transfers Layers at Rubbing Silver-coated Surface (은 박막이 코팅된 표면에서 물질전이층의 형성 및 그 트라이볼로지적 역할에 관한 연구)

  • 공호성;양승호;윤의성;김대은
    • Tribology and Lubricants
    • /
    • v.18 no.6
    • /
    • pp.377-383
    • /
    • 2002
  • The tribological role of mass transfer layer was studied with silver coatings under various ranges of load and sliding speed. Silver coating was performed with a functionally gradient coating method. Tests were per-formed in dry sliding conditions, using a ball-on-disk contact configuration, at the load of 0.0196-17.64 N and the sliding speed of 20-1,000 mm/s in ambient air. Optical microscope and EPMA analyses showed that contact surfaces were covered with the mass transfer layers of agglomerated wear particles depending upon the contact conditions, and they greatly influenced the tribological characteristics of the surfaces. However, the formation of mass transfer layer was suppressed as the sliding speed increased, and above a critical sliding speed, no mass transfer layer was able to form. For building up a general framework of triboiogical behavior of the coated silver films, all test data were summarized on a map whose axes are contact pressure and sliding speed.

Single Bubble Dynamic Behavior in AL2O3/H2O Nanofluid on Downward-Facing Heating Surface

  • Wang, Yun;Wu, Junmei
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.915-924
    • /
    • 2016
  • After a severe accident to the nuclear reactor, the in-vessel retention strategy is a key way to prevent the leakage of radioactive material. Nanofluid is a steady suspension used to improve heat-transfer characteristics of working fluids, formed by adding solid particles with diameters below 100nm to the base fluids, and its thermal physical properties and heat-transfer characteristics are much different from the conventional working fluids. Thus, nanofluids with appropriate nanoparticle type and volume concentration can enhance the heat-transfer process. In this study, the moving particle semi-implicit method-meshless advection using flow-directional local grid method is used to simulate the bubble growth, departure, and sliding on the downward-facing heating surface in pure water and nanofluid (1.0 vol.% $Al_2O_3/H_2O$) flow boiling processes; additionally, the bubble critical departure angle and sliding characteristics and their influence are also investigated. The results indicate that the bubble in nanofluid departs from the heating surface more easily and the critical departure inclined angle of nanofluid is greater than that of pure water. In addition, the influence of nanofluid on bubble sliding is not significant compared with pure water.

A Study on the Formation and the Tribological Role of Mass Transfers Layers at Rubbing Silver-coated Surface (은 박막이 코팅된 표면에서 물질전이층의 형성 및 그 트라이볼로지적 역할에 관한 연구)

  • Yang, Seung-Ho;Kong, Ho-Sung;Yoon, Eui-Sung;Kim, Dae-Eun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.45-52
    • /
    • 2002
  • The tribological role of mass transfer layer was studied with silver coatings under various ranges of load and sliding speed. Silver coating was performed with a functionally gradient coating method. Tests were performed in dry sliding conditions, using a ball-on-disk contact configuration, at the load of 0.0196-17.64 N and the sliding speed of 20-1,000 mm/s in ambient air. Optical microscope and EPMA analyses showed that contact surfaces were covered with the mass transfer layers of agglomerated wear particles depending upon the contact conditions, and they greatly influenced the tribological characteristics of the surfaces. However, the formation of mass transfer layer was suppressed as the sliding speed increased, and above a critical sliding speed, no mass transfer layer was able to form. For building up a general framework of tribological behavior of the coated silver films, all test data were summarized on a map whose axes are contact pressure and sliding speed.

  • PDF

Reducing the friction and the wear of carbon fiber composites with micro-grooves (미소채널 구조를 이용한 탄소 섬유 복합재료 면의 마찰 및 마모 감소)

  • Lee H.G.;Lee D.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.855-859
    • /
    • 2005
  • Carbon fiber polymeric composites have been widely used in bearing materials under high pressure without oil-lubrication due to their self-lubricating characteristics. However, the severe wear of carbon composite surface occurs due to the generation of wear debris when the pressure applied on the composite surface is higher than the critical value of composite surface. In this work, in order to remove wear debris continuously during sliding operation, composite specimens with many micro-grooves on their sliding surfaces were devised. To investigate the effect of wear debris on the tribological behavior of carbon/epoxy composites, dry sliding tests were performed with respect to applied pressure using the composite specimens with and without micro-grooves. From the measurement of friction coefficients and wear rates, a model for the effect of wear debris on the friction and wear of composites was proposed.

  • PDF

Investigation of Effect of Input Ground Motion on the Failure Surface of Mountain Slopes

  • Khalid, Muhammad Irslan;Pervaiz, Usman;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.7
    • /
    • pp.5-12
    • /
    • 2021
  • The reliable seismic stability evaluation of the natural slopes and geotechnical structures has become a critical factor of the design. Pseudo-static or permanent displacement methods are typically employed to evaluate the seismic slope performance. In both methods, the effect of input ground motion on the sliding surface is ignored, and failure surface from the limit equilibrium method is used. For the assessment of the seismic sensitivity of failure surface, two-dimensional non-linear finite element analyses are performed. The performance of the finite element model was validated against centrifuge measurements. A parametric study with a range of input ground motion was performed, and numerical results were used to assess the influence of ground motion characteristics on the sliding surface. Based on the results, it is demonstrated that the characteristics of input ground motion have a significant influence on the location of the seismically induce failure surface. In addition to dynamic analysis, pseudo-static analyses were performed to evaluate the discrepancy. It is observed that sliding surfaces developed from pseudo-static and dynamic analyses are different. The location of the failure surface change with the amplitude and Tm of motion. Therefore, it is recommended to determine failure surfaces from dynamic analysis

Fracture and Wear Characteristics of Al-Si alloy used for Compressor (컴프레서용 Al-Si 합금의 파괴 및 마모 특성)

  • 김재훈;김덕회
    • Tribology and Lubricants
    • /
    • v.15 no.2
    • /
    • pp.141-149
    • /
    • 1999
  • Fracture, fatigue and wear characteristics of Al-Si alloy used for compressor are experimentally studied. Plane strain fracture toughness test is carried out using three point bending specimen. Fatigue test is performed under constant loading condition and wear test is carried out as a function of sliding velocity and applied load. To obtain the crack propagation characteristics and wear mechanism of Al-Si alloy, fracture and worn surfaces are investigated using SEM. It is verified that fracture and fatigue strength of Al-Si alloy are improved by the fine microstructure of alloy. The wear behavior and specific wear amount of Al-Si alloy are not dependent on the microstructure but on a function of the silicon content. Anodizing on the surface of Al-Si alloy, surface hardness and wear characteristics are improved.

경사진 고체 표면 위를 내려가는 액적의 미글림 유동

  • 김진호;김호영;강병하;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.1025-1033
    • /
    • 2001
  • A scaling analysis is provided which predicts the sliding velocity of a liquid drop down an inclined surface. The analysis is based on the balance of the gravitational work rate that drives the drop sliding and the resistances by capillary and viscous forces. The capillary resistance is accounted for via the contact angle hysteresis, which is quantified by measuring the critical inclination causing the drop to start sliding. The sliding of the drop is governed by the rate of the viscous dissipation of the Stokes flow. The analysis result in its limit form for small contact angles is consistent with previous results. In the experiments to verify the analysis results, the measured sliding velocity of various liquid drops are shown to obey the predictions made in this study.

  • PDF