• Title/Summary/Keyword: critical load approach

Search Result 152, Processing Time 0.028 seconds

Buckling analysis of semi-rigid gabled frames

  • Rezaiee-Pajand, Mohammad;Shahabian, Farzad;Bambaeechee, Mohsen
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.605-638
    • /
    • 2015
  • It is intended to perform buckling analysis of steel gabled frames with tapered members and flexible connections. The method is based on the exact solutions of the governing differential equations for stability of a gabled frame with I-section elements. Corresponding buckling load and subsequently effective length factor are obtained for practical use. For several popular frames, the influences of the shape factor, taper ratio, span ratio, flexibility of connections and elastic rotational and translational restraints on the critical load, and corresponding equivalent effective length coefficient are studied. Some of the outcomes are compared against available solutions, demonstrating the accuracy, efficiency and capabilities of the presented approach.

A New Adaptive Load Sharing Mechanism in Homogeneous Distributed Systems Using Genetic Algorithm

  • Lee Seong-Hoon
    • International Journal of Contents
    • /
    • v.2 no.1
    • /
    • pp.39-44
    • /
    • 2006
  • Load sharing is a critical resource in computer system. In sender-initiated load sharing algorithms, the sender continues to send unnecessary request messages for load transfer until a receiver is found while the system load is heavy. Meanwhile, in the receiver initiated load sharing algorithms, the receiver continues to send an unnecessary request message for load acquisition until a sender is found while the system load is light. These unnecessary request messages result in inefficient communications, low CPU utilization, and low system throughput in distributed systems. To solve these problems, we propose a genetic algorithm based approach for improved sender-initiated and receiver-initiated load sharing in distributed systems. And we expand this algorithm to an adaptive load sharing algorithm. Compared with the conventional sender-initiated and receiver-initiated algorithms, the proposed algorithm decreases the response time and task processing time.

  • PDF

A Genetic Approach for Dynamic Load Redistribution in Heterogeneous Distributed Systems (이질형 분산시스템에서의 동적 부하재분배를 위한 유전적 접근법)

  • Lee, Seong-Hoon;Han, Kun-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.1-10
    • /
    • 2006
  • Load redistribution algorithm is a critical factor in computer system. In a receiver-initiated load redistribution algorithm, receiver(underloaded processor) continues to send unnecessary request messages for load transfer until a sender(overloaded processor) is found while the system load is light. Therefore, it yields many problems such as low CPU utilization and system throughput because of inefficient inter-processor communications until the receiver receives an accept message from the sender in this environment. This paper presents an approach based on genetic. algorithm(GA) for dynamic load redistribution in heterogeneous distributed systems. In this scheme the processors to which the requests are sent off are determined by the proposed GA to decrease unnecessary request messages.

  • PDF

A Study on Fatigue Life under Elliptical Contact using High Cycle Fatigue Models (고주기 피로 모델을 이용한 타원 접촉시 피로 수명에 관한 연구)

  • 조용주;김태완;구영필
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.252-258
    • /
    • 2004
  • In this study, using high cycle fatigue (HCF) criteria, the simulation of rolling contact fatigue is conducted under elliptical contact. The HCF criteria fall into three categories: the critical plane approach, the stress invariant approach and the approach based on the mesoscopic scale. The accurate calculation of contact stresses and subsurface stresses is essential to the prediction of crack initiation life. Contact stresses are obtained by contact analysis of a semi-infinite solid based on the use of influence functions and the subsurface stress field is obtained using rectangular patch solutions. The simulation results show that the critical load is decreasing rapidly and the site of crack initiation also moves rapidly to the surface from the subsurface when the friction coefficient exceeds a specific value for all of three fatigue criteria.

Influence of geometry and safety factor on fatigue damage predictions of a cantilever beam

  • Pecnik, Matija;Nagode, Marko;Seruga, Domen
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • The influence of two parameters on fatigue damage predictions of a variably loaded cantilever beam has been examined. The first parameter is the geometry of the cantilever beam and the weld connecting it to a rear panel. Variables of the geometry examined here include the cantilever length, the weld width on the critical cross-section and the angle of the critical cross-section. The second parameter is the safety factor, as set out by the Eurocode 3 standard. An analytical approach has been used to calculate the stresses at the critical cross-section and standard rainflow counting has been used for the extraction of the load cycles from the load history. The results here suggest that a change in the width and angle of the critical cross-section has a non-linear impact on the fatigue damage. The results also show that the angle of the critical cross-section has the biggest influence on the fatigue damage and can cause the weld to withstand fatigue better. The second parameter, the safety factor, is shown to have a significant effect on the fatigue damage calculation, whereby a slight increase in the endurance safety factor can cause the calculated fatigue damage to increase considerably.

On the stability of Rubber Isolation Bearings (면진 고무 베어링의 안정성에 대하여)

  • 이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.85-92
    • /
    • 1998
  • As an analytical approach, the area reduction formula of rubber bearings has been proposed to account for the reduction in bucking load due to shear. The result obtained from the formula is presumed to be conservative but the degree of conservatism is unknown. This paper describes a numerical study which aims at determining the effect of high shear strain on the critical load of rubber bearings using a finite element analysis program. The results from the finite element analysis which accounts for both the material and geometric non-linearities are compared against the theoretical results in order to examine the validity of the theoretical formulas.

  • PDF

Weld Quality Monitoring System Development Applying A design Optimization Approach Collaborating QFD and Risk Management Methods (품질 기능 전개법과 위험 부담 관리법을 조합한 설계 최적화 기법의 용접 품질 감시 시스템 개발 응용)

  • Son, Joong-Soo;Park, Young-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.207-216
    • /
    • 2000
  • This paper introduces an effective system design method to develop a customer oriented product using a design optimization process and to select a set of critical design paramenters,. The process results in the development of a successful product satisfying customer needs and reducing development risk. The proposed scheme adopted a five step QFD(Quality Function Deployment) in order to extract design parameters from customer needs and evaluated their priority using risk factors for extracted design parameters. In this process we determine critical design parameters and allocate them to subsystem designers. Subsequently design engineers develop and test the product based on these parameters. These design parameters capture the characteristics of customer needs in terms of performance cost and schedule in the process of QFD, The subsequent risk management task ensures the minimum risk approach in the presence of design parameter uncertainty. An application of this approach was demonstrated in the development of weld quality monitoring system. Dominant design parameters affect linearity characteristics of weld defect feature vectors. Therefore it simplifies the algorithm for adopting pattern classification of feature vectors and improves the accuracy of recognition rate of weld defect and the real time response of the defect detection in the performance. Additionally the development cost decreases by using DSP board for low speed because of reducing CPU's load adopting algorithm in classifying weld defects. It also reduces the cost by using the single sensor to measure weld defects. Furthermore the synergy effect derived from the critical design parameters improves the detection rate of weld defects by 15% when compared with the implementation using the non-critical design parameters. It also result in 30% saving in development cost./ The overall results are close to 95% customer level showing the effectiveness of the proposed development approach.

  • PDF

Load Balancing for Zone Routing Protocol to Support QoS in Ad Hoc Network

  • Chimmanee, Sanon;Wipusitwarakun, Komwut;Runggeratigul, Suwan
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1685-1688
    • /
    • 2002
  • Application Routing Load Balancing (ARLB) is a novel load balancing mode that combines QoS routing and load balancing in per application to support QoS far real-time application based on wired network. Zone Routing Protocol (ZRP) is a recent hybrid proactive/reactive routing approach in an attempt to achieve scalability of ad-hoc network. This routing approach has the potential to be efficient in the generation of control traffic than traditional routing schemes. Up to now, without proper load balancing tools, the ZRP can actually guarantee QoS for delay-sensitive applications when congestion occurred in ad-hoc network. In this paper, we propose the ARLB to improve QoS fur delay-sensitive applications based on ZRP in ad-hoc network when congestion occurred and to be forwarding mechanism fur route coupling to support QoS for real-time applications. The critical point is that the routing metric of ARLB is originally designed for wired network environment. Therefore, we study and present an appropriate metric or cost computation routing of ARLB for recently proposed ZRP over ad-hoc network environment.

  • PDF

Optimal Plastic Design of Planar Frames (평면(平面) Frame의 최적소성설계(最適塑性設計))

  • S.J.,Yim;S.H.,Hwang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.2
    • /
    • pp.1-10
    • /
    • 1980
  • The optimal plastic design of framed structures has been treated as the minimum weight design while satisfying the limit equilibrium condition that the structure may not fail in any of the all possible collapse modes before the specified design ultimate load is reached. Conventional optimum frame designs assume that a continuous spectrum of member size is available. In fact, the vailable sections merely consist of a finite range of discrete member sizes. Optimum frame design using discrete sections has been performed by adopting the plastic collapse theory and using the Complex Method of Box. This study has presented an iterative approach to the optimal plastic design of plane structures that involves the performance of a series of minimum weight design where the limit equilibrium equation pertaining to the critical collapse mode is added to the constraint set for the next design. The critical collapse mode is found by the collapse load analysis that is formulated as a linear programming problem. This area of research is currently being studied. This study would be applied and extended to design the larger and more complex framed structures.

  • PDF

A Change and Prediction of Biaxial Fatigue Life of Cast Duplex Stainless Steels by Degradation (2상 주조 스테인리스강의 열화로 인한 2축 피로수명의 변화와 예측)

  • Kwon, Jae-Do;Park, Joong-Cheul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.410-418
    • /
    • 2004
  • The multiaxial fatigue test under in-phase and out-of$.$phase load were performed to study what degradation phenomenon affects fatigue life with virgin and 3600 hrs degraded materials. The various kind of fatigue data fur fatigue life prediction were acquired under pure axial and pure torsional load of fully reversal condition. The models which was investigated are: 1) the von Mises equivalent strain range, 2) the critical shear plane approach method of Fatemi-Socie(FS) parameter, 3) the modified Smith-Watson-Topper(SWT) parameter. The result showed that, fatigue life by material degradation are decreased and life prediction which was used the FS parameter is not conservative but the best result.