• Title/Summary/Keyword: critical failure surface

Search Result 128, Processing Time 0.026 seconds

Comparative Study of LEM and SSR-FEM on Stability of Reinforced Soil Slope (보강토사면의 안정성에 대한 LEM과 SSR-FEM의 비교연구)

  • Kim, Young-Min;Kang, Seong-Gwi
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.11-18
    • /
    • 2009
  • This paper presents a comparative study of reinforced soil slope by using LEM and SSR-FEM. Current analysis methods for reinforced soil wall are based on LEM. SSR-FEM assumes a reduction of soil strength by a factor to reach a critical state prior to failure based on continuum mechanics. In this study the comparisons are concerned with the factor of safety and the potential failure surface in reinforced soil wall. We investigated the stability of the reinforced soil wall with a slope of $60^{\circ}$ by LEM and SSR-FEM. The comparisons indicated good performance of the SSR-FEM on stability analysis of reinforce soil wall.

  • PDF

Interfacial stress assessment at the cracked zones in CFRP retrofitted RC beams

  • Hojatkashani, Ata;Kabir, Mohammad Zaman
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.705-733
    • /
    • 2012
  • In this work, an experimental examination was carried out to study interfacial stresses developed at the junction zones between carbon fiber reinforced plastic (CFRP) fabrics (~1 mm thickness) and tensile concrete portion in CFRP retrofitted RC beams. In this respect, initially six similar RC beams of $150{\times}150{\times}1000mm$ dimensions were prepared. Three of which were strengthened with CFRP fabrics at the tensile side of the beams. Furthermore, a notch was cut at the center of the bottom surface for all of the studied beams. The notch was 15 mm deep and ran across the full width of tension side of the beams. The mentioned interfacial stresses could be calculated from strains measured using strain gauges mounted on the interface zone of the tensile concrete and the CFRP sheet. Based on the results obtained, it is shown that interfacial stresses developed between CFRP fabrics and RC beam had a noticeable effect on debonding failure mode of the latter. The load carrying capacity of CFRP strengthened RC specimens increased ~75% compared to that of the control RC beams. This was attributed to the enhancement of flexural mode of the former. Finally, finite element analysis was also utilized to verify the measured experimental results.

Seismic response analysis of an unanchored vertical vaulted-type tank

  • Zhang, Rulin;Cheng, Xudong;Guan, Youhai;Tarasenko, Alexander A.
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.67-77
    • /
    • 2017
  • Oil storage tanks are vital life-line structures, suffered significant damages during past earthquakes. In this study, a numerical model for an unanchored vertical vaulted-type tank was established by ANSYS software, including the tank-liquid coupling, nonlinear uplift and slip effect between the tank bottom and foundation. Four actual earthquakes recorded at different soil sites were selected as input to study the dynamic characteristics of the tank by nonlinear time-history dynamic analysis, including the elephant-foot buckling, the liquid sloshing, the uplift and slip at the bottom. The results demonstrate that, obvious elephant-foot deformation and buckling failure occurred near the bottom of the tank wall under the seismic input of Class-I and Class-IV sites. The local buckling failure appeared at the location close to the elephant-foot because the axial compressive stress exceeded the allowable critical stress. Under the seismic input of Class-IV site, significant nonlinear uplift and slip occurred at the tank bottom. Large amplitude vertical sloshing with a long period occurred on the free surface of the liquid under the seismic wave record at Class-III site. The seismic properties of the storage tank were affected by site class and should be considered in the seismic design of large tanks. Effective measures should be taken to reduce the seismic response of storage tanks, and ensure the safety of tanks.

Reliability Analysis of Seismically Induced Slope Deformations (신뢰성 기법을 이용한 지진으로 인한 사면 변위해석)

  • Kim, Jin-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.111-121
    • /
    • 2007
  • The paper presents a reliability-based method that can capture the impact of uncertainty of seismic loadings. The proposed method incorporates probabilistic concepts into the classical limit equilibrium and the Newmark-type deformation techniques. The risk of damage is then computed by Monte Carlo simulation. Random process and RMS hazard method are introduced to produce seismic motions and also to use them in the seismic slope analyses. The geotechnical variability and sampling errors are also considered. The results of reliability analyses indicate that in a highly seismically active region, characterization of earthquake hazard is the more critical factor, and characterization of soil properties has a relatively small effect on the computed risk of slope failure and excessive slope deformations. The results can be applicable to both circular and non-circular slip surface failure modes.

Short Bowel Syndrome as the Leading Cause of Intestinal Failure in Early Life: Some Insights into the Management

  • Goulet, Olivier;Nader, Elie Abi;Pigneur, Benedicte;Lambe, Cecile
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.4
    • /
    • pp.303-329
    • /
    • 2019
  • Intestinal failure (IF) is the critical reduction of the gut mass or its function below the minimum needed to absorb nutrients and fluids required for adequate growth in children. Severe IF requires parenteral nutrition (PN). Pediatric IF is most commonly due to congenital or neonatal intestinal diseases or malformations divided into 3 groups: 1) reduced intestinal length and consequently reduced absorptive surface, such as in short bowel syndrome (SBS) or extensive aganglionosis; 2) abnormal development of the intestinal mucosa such as congenital diseases of enterocyte development; 3) extensive motility dysfunction such as chronic intestinal pseudo-obstruction syndromes. The leading cause of IF in childhood is the SBS. In clinical practice the degree of IF may be indirectly measured by the level of PN required for normal or catch up growth. Other indicators such as serum citrulline have not proven to be highly reliable prognostic factors in children. The last decades have allowed the development of highly sophisticated nutrient solutions consisting of optimal combinations of macronutrients and micronutrients as well as guidelines, promoting PN as a safe and efficient feeding technique. However, IF that requires long-term PN may be associated with various complications including infections, growth failure, metabolic disorders, and bone disease. IF Associated Liver Disease may be a limiting factor. However, changes in the global management of IF pediatric patients, especially since the setup of intestinal rehabilitation centres did change the prognosis thus limiting "nutritional failure" which is considered as a major indication for intestinal transplantation (ITx) or combined liver-ITx.

Defect Detection in Friction Stir Welding by Online Infrared Thermography

  • Kryukov, Igor;Hartmann, Michael;Bohm, Stefan;Mund, Malte;Dilger, Klaus;Fischer, Fabian
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.50-57
    • /
    • 2014
  • Friction Stir Welding (FSW) is a complex process with several mutually interdependent parameters. A slight difference from known settings may lead to imperfections in the stirred zone. These inhomogeneities affect on the mechanical properties of the FSWed joints. In order to prevent the failure of the welded joint it is necessary to detect the most critical defects non-destructive. Especially critical defects are wormhole and lack of penetration (LOP), because of the difficulty of detection. Online thermography is used process-accompanying for defect detecting. A thermographic camera with a fixed position relating to the welding tool measures the heating-up and the cool down of the welding process. Lap joints with sound weld seam surfaces are manufactured and monitored. Different methods of evaluation of heat distribution and intensity profiles are introduced. It can be demonstrated, that it is possible to detect wormhole and lack of penetration as well as surface defects by analyzing the welding and the cooling process of friction stir welding by passive online thermography measurement. Effects of these defects on mechanical properties are shown by tensile testing.

Sequential Use of COMSOL Multiphysics® and PyLith for Poroelastic Modeling of Fluid Injection and Induced Earthquakes (COMSOL Multiphysics®와 PyLith의 순차 적용을 통한 지중 유체 주입과 유발지진 공탄성 수치 모사 기법 연구)

  • Jang, Chan-Hee;Kim, Hyun Na;So, Byung-Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.643-659
    • /
    • 2022
  • Geologic sequestration technologies such as CCS (carbon capture and storage), EGS (enhanced geothermal systems), and EOR (enhanced oil recovery) have been widely implemented in recent years, prompting evaluation of the mechanical stability of storage sites. As fluid injection can stimulate mechanical instability in storage layers by perturbing the stress state and pore pressure, poroelastic models considering various injection scenarios are required. In this study, we calculate the pore pressure, stress distribution, and vertical displacement along a surface using commercial finite element software (COMSOL); fault slips are subsequently simulated using PyLith, an open-source finite element software. The displacement fields, are obtained from PyLith is transferred back to COMSOL to determine changes in coseismic stresses and surface displacements. Our sequential use of COMSOL-PyLith-COMSOL for poroelastic modeling of fluid-injection and induced-earthquakes reveals large variations of pore pressure, vertical displacement, and Coulomb failure stress change during injection periods. On the other hand, the residual stress diffuses into the remote field after injection stops. This flow pattern suggests the necessity of numerical modeling and long-term monitoring, even after injection has stopped. We found that the time at which the Coulomb failure stress reaches the critical point greatly varies with the hydraulic and poroelastic properties (e.g., permeability and Biot-Willis coefficient) of the fault and injection layer. We suggest that an understanding of the detailed physical properties of the surrounding layer is important in selecting the injection site. Our numerical results showing the surface displacement and deviatoric stress distribution with different amounts of fault slip highlight the need to test more variable fault slip scenarios.

EXPERIMENTAL STUDIES OF SCUFFING MECHANISM IN OIL LUBRICATED PISTON-RING/CYLINDER SLIDING CONTACTS

  • Shi, H.S.;Wang, H.;Hu, Y.Z.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.415-416
    • /
    • 2002
  • Experiments have been conducted to investigate scuffing mechanism in oil lubricated piston-ring /cylinder sliding contacts. Samples were extracted from actual components to simulate the real contact geometry and other influencing conditions. A standard test machine. with some modifications, has been used for the investigation of the effects of surface temperature load and sliding velocity. preliminary tests were carried out to find the critical temperature of scuffing using gradient temperature under a constant load, reciprocating frequency and stroke. The experimental and analytical results show that a transition from lubricated contact to adhesion, accompanied by the phenomena such as material transfer between the two sliding surfaces, local contact welding and temperature rise, and sharp increase in friction coefficient, appears to contribute to the final failure of scuffing.

  • PDF

Experimental study on rolling contact fatigue of railway wheel (철도차량 차륜의 구름접촉피로의 실험적 연구)

  • Seo Jung Won;Hu Hun Mu;Lee Dong Hyeong;Chung Heung Chai
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.714-719
    • /
    • 2004
  • Railway wheels and axles belong to the most critical components in railway vehicles. The service conditions of railway vehicles became more severe in recent years due to the increase of speed. Therefore, a more precise evaluation of wheel/set life and safety has been requested. One of the major reasons of railway wheel damage is a contact zone failure by wheel/rail contact. In this paper, we conducted a rolling contact fatigue test for wheels using a specimen of wheel/rail. the behavior of hardeness and residual stress below the contact surface of the test pieces in the fatigue process were analyzed. Finally, the relation between fatigue life and contact pressure was obtained.

  • PDF

A Study on the Collision and Grounding of Ships using HYDROCODE LS/DYNA3D (HYDROCODE LS/DYNA3D를 이용한 선박의 충돌 및 좌초에 관한 연구)

  • 이상갑;정영구
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.1
    • /
    • pp.1-14
    • /
    • 1997
  • This paper describes a series of numerical simulations of colision between a 310, 000 DWT double hull VLCC (struck ship) and three 35, 000, 70, 000 and 105, 000 DWT tankers (striking ships) using LS/DYNA3D. Collisions are assumed to occur at the middle of the VLCC with the striking ships moving at right angle to the VLCC centerline. Striking ship speeds are varied to find a critical speed without failure of inner side shell, and the informations of collision force and absorption energy of each case are also reported. The validation of LS/DYNA3D in this study was made by comparing the result of numerical simulation of LS/DYNA3D with that of double hull tanker grounding experiment by the Carderock Division of Navla Surface Warfare Center (CDNSWC).

  • PDF