• Title/Summary/Keyword: critical failure surface

Search Result 128, Processing Time 0.026 seconds

Radon Reduction Performance of Adsorbent for Making Radon-Reducing Functional Board (라돈 저감형 기능성 보드제작을 위한 흡착재의 라돈 저감 성능)

  • Kim, Ki-Hoon;Pyeon, Su-Jeong;Kim, Yeon-Ho;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.139-147
    • /
    • 2019
  • In this study, an experiment was conducted to evaluate the properties of cement matrix using diatomite and silica gel as adsorbents of radon. The adsorption properties of diatomite of a natural adsorbent and silica gel of an artificial sorbent were examined to confirm the reduction of radon gas concentration of the removal of radon gas in the indoor environment of the human body. We conducted a performance evaluation for the study. The fluidity, air content, density, absorption, flexural failure load, thermal conductivity and radon gas concentration of the specimen using diatomite and silica gel were measured. the fluidity and the air content of the adsorbed matrix with diatomite were decreased as the diatomite replacement ratio increased. Which seems to affect the subsequent matrix by the absorption of the compounding water of diatomite. As the replacement rate of silica gel increased, the fluidity decreased and the air content increased up to constant replacement rate. It is judged that the surface of the silica gel has a critical point at which it can react with moisture.

FE analysis of RC structures using DSC model with yield surfaces for tension and compression

  • Akhaveissy, A.H.;Desai, C.S.;Mostofinejad, D.;Vafai, A.
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.123-148
    • /
    • 2013
  • The nonlinear finite element method with eight noded isoparametric quadrilateral element for concrete and two noded element for reinforcement is used for the prediction of the behavior of reinforcement concrete structures. The disturbed state concept (DSC) including the hierarchical single surface (HISS) plasticity model with associated flow rule with modifications is used to characterize the constitutive behavior of concrete both in compression and in tension which is named DSC/HISS-CT. The HISS model is applied to shows the plastic behavior of concrete, and DSC for microcracking, fracture and softening simulations of concrete. It should be noted that the DSC expresses the behavior of a material element as a mixture of two interacting components and can include both softening and stiffening, while the classical damage approach assumes that cracks (damage) induced in a material treated acts as a void, with no strength. The DSC/HISS-CT is a unified model with different mechanism, which expresses the observed behavior in terms of interacting behavior of components; thus the mechanism in the DSC is much different than that of the damage model, which is based on physical cracks which has no strength and interaction with the undamaged part. This is the first time the DSC/HISS-CT model, with the capacity to account for both compression and tension yields, is applied for concrete materials. The DSC model allows also for the characterization of non-associative behavior through the use of disturbance. Elastic perfectly plastic behavior is assumed for modeling of steel reinforcement. The DSC model is validated at two levels: (1) specimen and (2) practical boundary value problem. For the specimen level, the predictions are obtained by the integration of the incremental constitutive relations. The FE procedure with DSC/HISS-CT model is used to obtain predictions for practical boundary value problems. Based on the comparisons between DSC/HISS-CT predictions, test data and ANSYS software predictions, it is found that the model provides highly satisfactory predictions. The model allows computation of microcracking during deformation leading to the fracture and failure; in the model, the critical disturbance, Dc, identifies fracture and failure.

A Study on the Behavior of Deformation in Soft Soils Subjected to Lateral Flow (측방유동을 받는 연약지반의 변형거동에 관한 연구)

  • 안종필;홍원표
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.25-40
    • /
    • 1994
  • In order to investigate behavior of lateral flow by plasticity of soils and construction control due to it, in the case of unsymmetrical surcharge load on the soft soils, we examine the existing theoretical background, and compared and analysed the experimental results by model test. After model test fabricated by model test apparatus, which made full remolding samples of soft soils, we observed the state of behavior for deformation with increasing load step to constant time interval. The critical surcharge and ultimate capacity showed tendency to approach to the proposed value of Jaky and Meyerhof, and the lateral flow pressure of which the maximum value was acted on the depth calculated by z/H=0.26+1.71cu and one third value of the maximum lateral flow pressure acted on the ground surface, approach the trapezoid distribution And maximum lateral flow pressure will be calculated by proposed equation of Hong or simple equation which($\alpha=0.4$) the flow pressure coefficient . of proposed equation by Tschebotarioff exchanged to($\alpha=K_0$) . Basides, the failure surcharge by [(q/$y_m$)-q] and [$S_y-(y_m/S_y)$] showed the smaller than ultimate bearing capacity, especially failure criteria line of control diagram of [$S_y(y_m/S_y)$] will be calculated by following equation. $S_y.=3.15exp[-0.58(y_m/S_y)$

  • PDF

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF

A study on the shear bond strengths of orthodontic brackets according to surface treatments and sizes of amalgam restorations (아말감 충전물의 크기와 표면 처리방법에 따른 교정용 브라켓의 전단접착강도에 대한 연구)

  • Kim, Hyeun-Hee;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.31 no.3 s.86
    • /
    • pp.381-391
    • /
    • 2001
  • In orthodontic patients, frequently, amalgam restorations are present on the buccal surface of molars. The ability to successfully bond orthodontic brackets and buccal tubes to amalgam restorations would therefore be of clinical value. But the bond strength to total amalgam surface is probably not critical in most instances. Because there is usually a considerable amount of sound enamel surrounding a buccal amalgam filling. The purpose of this study was to evaluate the bond strengths of orthodontic brackets according to surface treatments and size of amalgam restorations. Eighty tooth specimen were assigned to four groups according to amalgam size-1.5mm, 2.0mm, 2.5mm, 3.0mm diameter-and then divided into two groups : one half was sandblasting group the other half was no sandblasting group. After Bracket bonding, shear bond strength for each specimen was determined and bond failure patterns was evaluated. 1. Shear bond strength of amalgam size 1.5mm group was significantly higher than that of the other groups. (p<0.05) 2. There was no significant difference in the bond strength produced by sandblasting. (p<0.05) 3. Shear bond strength of G and H group of which amalgam restoration ratio to the bracket base sizes were $61\%$ were significantly decreased $50-60\% level of that of control group. (p<0.05) 4. There was positive correlation between sandblasting and mARI. (p<0.05) The results of the present study indicate that it may be feasible to bond orthodontic bracket clinically successfully to amalgam restoration with conventional orthodontic resin when its size is less than $50\%$ of that of bracket base.

  • PDF

Microstructure and Properties of Mortar Containing Synthetic Resin using Image Analysis (이미지 분석을 활용한 합성수지 혼입 모르타르의 특성 및 미세구조 분석)

  • Lee, Binna;Min, Jiyoung;Lee, Jong-Suk;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.59-65
    • /
    • 2016
  • Commercial synthetic resins with great amount of hydrogen atoms were investigated for neutron shielding aggregates. Total three types of resins were considered in this study: high density polyethylene (HDPE), polypropylene (PP), and ultra molecular weight polyethylene (UPE). When these resins replaced 20, 40, 60 vol% of fine aggregates, mechanical properties were first evaluated including compressive and tensile strengths, and then image/microstructure analyses such as cross-section analysis, SEM, and X-ray CT were performed. The results showed that the compressive and tensile strengths decreased with the increase of replacement ratio of HDPE and PP, which was found through image analysis that it was closely related to the distribution of resins at the failure surface of test specimens. The strength reduction of UPE was quite small compared to HDPE and PP but it abruptly increased when the replacement level exceeded 60 vol%. The results of microstructure analyses indicated that the replacement level significantly affected the amount of air void so that it is critical to determine the reasonable amount of UPE to make cementitous materials for neutron shielding.

Dominant Migration Element in Electrochemical Migration of Eutectic SnPb Solder Alloy in D. I. Water and NaCl Solutions (증류수 및 NaCl 용액내 SnPb 솔더 합금의 Electrochemical Migration 우세 확산원소 분석)

  • Jung, Ja-Young;Lee, Shin-Bok;Yoo, Young-Ran;Kim, Young-Sik;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.1-8
    • /
    • 2006
  • Higher density integration and adoption of new materials in advanced electronic package systems result in severe electrochemical reliability issues in microelectronic packaging due to higher electric field under high temperature and humidity conditions. Under these harsh conditions, metal interconnects respond to applied voltages by electrochemical ionization and conductive filament formation, which leads to short-circuit failure of the electronic package. In this work, in-situ water drop test and evaluation of corrosion characteristics for SnPb solder alloys in D.I. water and NaCl solutions were carried out to understand the fundamental electrochemical migration characteristics and to correlate each other. It was revealed that electrochemical migration behavior of SnPb solder alloys was closely related to the corrosion characteristics, and Pb was primarily ionized in both D.I. water and $Cl^{-}$ solutions. The quality of passive film formed at film surface seems to be critical not only for corrosion resistance but also for ECM resistance of solder alloys.

  • PDF

Shear Strength of the ${Cu_6}{Sn_5}$-dispersed Sn-Pb Solder Bumps Fabricated by Screen Printing Process (${Cu_6}{Sn_5}$를 분산시켜 스크린 프린팅법으로 제조한 Sn-Pb 솔더범프의 전단강도)

  • Choe, Jin-Won;Lee, Gwang-Eung;Cha, Ho-Seop;O, Tae-Seong
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.799-806
    • /
    • 2000
  • Cu$_{6}$Sn$_{5}$-dispersed 63Sn-37Pb solder bumps of 760$\mu\textrm{m}$ size were fabricated on Au(0.5$\mu\textrm{m}$)/Ni(5$\mu\textrm{m}$)/Cu(27$\pm$20$\mu\textrm{m}$) BGA substrates by screen printing process, and their shear strength were characterized with variations of dwell time at reflow peak temperature and aging time at 15$0^{\circ}C$ . With dwell time of 30 seconds at reflow peak temperature, the solder bumps with Cu$_{6}$Sn$_{5}$ dispersion exhibited higher shear strength than the value of the 63Sn-37Pb solder bump. With increasing the dwell time longer than 60 seconds, however the shear strength of the Cu$_{6}$Sn$_{5}$-dispersed solder bumps became lower than that the 63Sn-37Pb solder bumps. The failure surface of the solder bumps could be divided into two legions of slow crack propagation and critical crack propagation. The shear strength of the solder bumps was inversely proportional to the slow crack propagation length, regardless of the dwell time at peak temperature, aging time at 150 $^{\circ}C$ and the volume fraction of Cu$_{6}$Sn$_{5}$ dispersion.> 5/ dispersion.

  • PDF