• 제목/요약/키워드: critical failure surface

검색결과 128건 처리시간 0.024초

2층 고무/코드 적층판의 피로 수명 예측 (Prediction of Fatigue Life in 2 Ply Rubber/Cord Laminate)

  • 임동진;이윤기;윤희석;김민호
    • Composites Research
    • /
    • 제16권3호
    • /
    • pp.9-17
    • /
    • 2003
  • 타이어 벨트층내의 코드간 균열연결 및 층간균열진전을 모사하기 위해 자유단을 갖는 2층 고무/코드 적층시험편에 대한 4~11mm 변위제어 실험을 수행하였다. 자유단의 코드간 균열연결시의 폭방향 균열진전량은 45$^{\circ}$ 경사진 코드들간 길이의 절반에 도달할 때의 측정값으로 하였으며, 이는 탐침법에 의해 측정되었다 또한, 자유단에서 코드들간 균열연결을 모사하기위해 2차원의 이상화된 모델링 기법을 고안하였다. 이론수명은 테어링에너지(균열파단면의 단위면적당 방출에너지)를 이용하여 코드간 균열연결수명(임계값)과 이후 최종파손까지의 수명으로 구분하였으며, 이들을 각기 실험값과 비교하였다. 임계값까지의 수명예측은 실험과 비교하여 약 20%, 최종파손까지 약 65%의 오차가 발생하였다. 따라서, 전체 이론수명은 실험과 비교하여 약 45%의 오차를 발생하였다.

Failure analysis of prestressing steel wires

  • Toribio, J.;Valiente, A.
    • Steel and Composite Structures
    • /
    • 제1권4호
    • /
    • pp.411-426
    • /
    • 2001
  • This paper treats the failure analysis of prestressing steel wires with different kinds of localised damage in the form of a surface defect (crack or notch) or as a mechanical action (transverse loads). From the microscopical point of view, the micromechanisms of fracture are shear dimples (associated with localised plasticity) in the case of the transverse loads and cleavage-like (related to a weakest-link fracture micromechanism) in the case of cracked wires. In the notched geometries the microscopic modes of fracture range from the ductile micro-void coalescence to the brittle cleavage, depending on the stress triaxiality in the vicinity of the notch tip. From the macroscopical point of view, fracture criteria are proposed as design criteria in damage tolerance analyses. The transverse load situation is solved by using an upper bound theorem of limit analysis in plasticity. The case of the cracked wire may be treated using fracture criteria in the framework of linear elastic fracture mechanics on the basis of a previous finite element computation of the stress intensity factor in the cracked cylinder. Notched geometries require the use of elastic-plastic fracture mechanics and numerical analysis of the stress-strain state at the failure situation. A fracture criterion is formulated on the basis of the critical value of the effective or equivalent stress in the Von Mises sense.

강도-응력 간섭모델을 적용한 철도차량용 차륜의 피로강도 및 신뢰성 평가법 (An Evaluation Method of Fatigue Strength and Reliability in a Railway Wheel with an Application of Strength-Stress Interference Model)

  • 박병노;김기환;김호경
    • 한국철도학회논문집
    • /
    • 제5권2호
    • /
    • pp.118-124
    • /
    • 2002
  • The failure probability of wheel beyond 10$\^$7/ cycles is achieved by the strengths-stress interference model for the evaluation of fatigue strength and reliability in the wheel, From plane bending fatigue test results, the fatigue life (N$\_$f/) for the smooth and 200㎛ holed specimens can be represented as $\sigma$$\_$a/ = 1326N$\_$f/$\^$-0.10/ and $\sigma$$\_$a/ = 2894N$\_$f/$\^$-0.18/. Respectively, fatigue strength of the wheel at beyond 10$\^$7/cycles was about 332 MPa. And, the fatigue strength for the specimen with a micro hole (d=200㎛) which simulated an inclusion on the wheel surface was about 235 MPa. Thus, a micro hole (d=200㎛) caused about 30% reduction of fatigue strength of the specimen. The failure probabilities for the smooth and micro-holed specimens, derived from the strength-stress interference model, are 0.0148% and 13.05%, respectively. The current finding suggests that at least 200 ㎛ sized inclusion, which might be produced during manufacturing process, will cause a critical effect on integrity of the railway vehicle.

T300/924C 탄소섬유/에폭시 복합재 적층판의 이차원 압축 강도의 크기효과 및 좌굴방지장치의 영향 (Two Dimensional Size Effect on the Compressive Strength of T300/924C Carbon/Epoxy Composite Plates Considering Influence of an Anti-buckling Device)

  • 공창덕;방조혁;이정환
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.88-91
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section (length x width) was investigated on the compressive behavior of a T300/924 [45/-45/0/90]3s, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a 30$\times$30, 50$\times$50, 70$\times$70, and 90mm$\times$90mm gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

  • PDF

질 성형을 위한 실리콘 액 주입 후 발생한 급성 호흡 곤란 증후군 1예 (A Case of Acute Respiratory Distress Syndrome Induced by Injection of Silicone Fluid for Colpoplasty)

  • 정창욱;전익수;장재영;박지은;송춘영;김성헌;강경우
    • Tuberculosis and Respiratory Diseases
    • /
    • 제57권2호
    • /
    • pp.193-196
    • /
    • 2004
  • 저자들은 실리콘 액을 이용한 질 성형술 후에 급성호흡 곤란 증후군을 보인 환자에서 경기관지 폐생검으로 실리콘에 의한 것으로 생각되는 폐포 대식세포내의 봉입체를 확인하고 대증적인 치료로 호전된 1예를 경험하였기에 문헌고찰과 함께 보고하는 바이다.

특정사례사면 해석 결과 및 평가

  • 백규호;오세붕;이승래
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1991년도 추계학술발표회 논문집 지반공학에서의 컴퓨터 활용 COMPUTER UTILIZATION IN GEOTECHNICAL ENGINEERING
    • /
    • pp.25-33
    • /
    • 1991
  • The slope stability analysis of Carsington dam is performed, considering the effects of pore water pressure, slip surface configuration, lateral stress and various shear strengths. Without yellow clay layer, the Bowles' and STABR programs were used to find the circular slip surface which has the maximum safety factor. At last using the Morgenstern-Price method, the effects of rainfall and strength of yellow clay were mainly considered in the back analyses after failure. It was found that (1) the potential slip was not predicted in the analysis based on the modified Bishop method without considering the yellow clay layer, and (2) the crllapse of dam had been occurred according to the critical shear strength of the yellow clay and pore water pressure increase.

  • PDF

An Investigation of Thermal Margin for External Reactor Vessel Cooling(ERVC) in Large Advanced Light Water Reactors(ALWR)

  • Park, Jong-Woon;Jerng, Dong-Wook
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.473-478
    • /
    • 1997
  • A severe accident management strategy, in-vessel retention corium through external reactor vessel cooling(ERVC) is being studied worldwide as a means to prevent reactor vessel failure following a core melt accident. An evaluation of feasibility of this ERVC for a large Advanced Light Water Reactor (ALWR) is presented. To account for the coolability of corium and metal in the reactor vessel, a thermal analysis is performed using an existing method. Results show that the peak heat flux along the inner surface of the reactor vessel lower head has a relatively smaller margin than a small capacity reactor such as AP600 in regards with the critical heat flux attainable at the outer surface of the reactor vessel lower head.

  • PDF

대심도 암반의 터널 설계를 위한 지반 조사와 특성화 (Ground Investigation and Characterization for Deep Tunnel Design)

  • 윤운상;최재원;박정훈;송국환;김영근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.584-590
    • /
    • 2009
  • One of the critical design problems involved in deep tunnelling in brittle rock, is the creation of surface spalling damage and breakouts. If weak fault zone is developed in deep tunnel, squeezing problem is added to the problems. According to the results of ground investigation in the study area, hard granitic rockmass and distinguished high angle fault zone are distributed on the tunnel level over 400m depth. To analyse the probability of brittle failure and squeezing, ground characterization with special lab. and field test were carried out. By the results, probability of brittle failures like spalling and rock burst is very low. But squeezing may be probable, if weak fault zone observed surface and drill core is extended to designed tunnel level.

  • PDF

Investigation of Galling In Forming Galvanized Steel Sheet

  • Altan, Taylan;Kardes, Nimet;Kim, Hyunok
    • Corrosion Science and Technology
    • /
    • 제10권1호
    • /
    • pp.1-5
    • /
    • 2011
  • The major purpose of the present study is to evaluate the performance of various galvanized (GI) or galvannealed (GA) mild steels and AHSS in stamping applications. Finite Element Analysis (FEA) of selected stamping operations was conducted to estimate the critical pressure boundary conditions that exist in practice. Using this information, laboratory tribotests, e.g. Twist Compression (TCT), Deep Drawing (DDT) and Strip Drawing (SDT) Tests, were developed to evaluate the performance of selected lubricants and die materials/coatings in forming galvanized steels of interest. The sheet materials investigated included mild steels and AHSS (e.g. DP600 GI/GA, DP780 GI/GA, TRIP780 GA and DP980 GI/GA). Experimental results showed that galvanized material resulted in more galling, while galvannealed material showed more powdering and flaking. The surface roughness and chemical composition of galvanized sheet materials affected the severity of galling under the same testing conditions, i.e. lubricants and die materials/coatings. The results of this study helped to determine the critical interface pressure that initiates lubricant failure and galling in stamping selected galvanized sheet materials. Thus, to prevent or postpone the critical interface conditions, the results of this study can be used to select the optimum combination of galvanized sheet, die material, die coating and lubricant for forming structural automotive components.

배관내 자유수면에서 와류현상에 대한 연구 (A study on the free surface vortex in the pipe system)

  • 오율권;장완호;이종원;김상녕
    • 대한기계학회논문집
    • /
    • 제16권11호
    • /
    • pp.2126-2135
    • /
    • 1992
  • 본 연구에서는 국내 원자력 발전소중 영광 3,4호기의 설계자료를 토대로 1/6 크기로 축소한 모델실험을 통해서 공기흡입이 발생하는 임계수위를 결정하는 상관식을 개발하였으며 또한 공기흡입구를 reducer type으로 개선함으로써 공기흡입을 방지할 수 있음을 밝혔다.