• 제목/요약/키워드: critical factor of safety

검색결과 276건 처리시간 0.022초

Analytic Hierarchy Process for Prioritizing Radiation Safety Measures in Medical Institutions

  • Hyun Suk Kim;Heejeong Jeong;Hyungbin Moon;Sang Hyun Park
    • Journal of Radiation Protection and Research
    • /
    • 제49권1호
    • /
    • pp.40-49
    • /
    • 2024
  • Background: This study aimed to prioritize policy measures to improve radiation safety management in medical institutions using the analytic hierarchy process. Materials and Methods: It adopted three policy options-engineering, education, and enforcement-to categorize safety management measures, the so-called Harvey's 3Es. Then, the radiation safety management measures obtained from the current system and other studies were organized into action plan categories. Using the derived model, this study surveyed 33 stakeholders of radiation safety management in medical institutions and analyzed the importance of each measure. Results and Discussion: As a result, these stakeholders generally identified enforcement as the most important factor for improving the safety management system. The study also found that radiation safety officers and medical physicists perceived different measures as important, indicating clear differences in opinions among stakeholders, especially in improving quality assurance in radiation therapy. Hence, the process of coordination and consensus is likely to be critical in improving the radiation safety management system. Conclusion: Stakeholders in the medical field consider enforcement as the most critical factor in improving their safety management systems. Specifically, the most crucial among the six specific action plans was the "reinforcement of the organization and workforce for safety management," with a relative importance of 25.7%.

사면의 안전율과 임계변위에 의한 지진 재해 위험지도의 비교 (Seismic Landslide Hazard Maps Based on Factor of Safety and Critical Displacements of Slope)

  • 정의송;조성원;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.509-516
    • /
    • 2001
  • As the first step for the application of seismic landslide hazard maps to domestic cases, two types of hazard maps on Ul-joo from pseudostatic analysis and Newmark sliding block analysis are constructed and comllared. Arcview, the GIS program and the 1:5,000 digital maps of the test-site are used for the construction of hazard maps and tile parameters for the analyses are determined by seismic survey and laboratory tests. The results from the pseudostatic analysis have more conservative values of lower critical slope angles, although the results from the two different analyses have similar tendencies. In detail, with increasing the peak ground acceleration, the difference between the two analyses in the critical slope angle increases, while the difference decreases with increasing the maximum soil depth.

  • PDF

폴리머재료의 파괴인성치에 관한 연구 (A study on the Dynamic Fracture Toughness for Polymeric Materials)

  • 최영식;박명균
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2001년도 춘계학술대회
    • /
    • pp.311-317
    • /
    • 2001
  • The notched Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on ploymeric materials. An analysis method for rubber toughened PVC is suggested to evaluate critical strain energy release rates(Gc) from the Charpy impact energy measurements. An Instrumented Charpy Impact tester was used to extract ancillary information concerning fracture properties in addition to total fracture properties and maximum critical loads. The stress intensity factor Kd was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well.

  • PDF

Prediction of Safety Critical Software Operational Reliability from Test Reliability Using Testing Environment Factors

  • Jung, Hoan-Sung;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.49-57
    • /
    • 1999
  • It has been a critical issue to predict the safety critical software reliability in nuclear engineering area. For many years, many researches have focused on the quantification of software reliability and there have been many models developed to quantify software reliability. Most software reliability models estimate the reliability with the failure data collected during the test assuming that the test environments well represent the operation profile. User's interest is however on the operational reliability rather than on the test reliability. The experiences show that the operational reliability is higher than the test reliability. With the assumption that the difference in reliability results from the change of environment, from testing to operation, testing environment factors comprising the aging factor and the coverage factor are developed in this paper and used to predict the ultimate operational reliability with the failure data in testing phase. It is by incorporating test environments applied beyond the operational profile into testing environment factors. The application results show that the proposed method can estimate the operational reliability accurately.

  • PDF

고무보강 폴리머 재료의 저속 충격 해석 (A study on the Impact Characteristics for Rubber Toughened polymeric Materials under Low Velocity Impact)

  • 구본성;박명균;박세만
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2004년도 춘계학술대회
    • /
    • pp.219-231
    • /
    • 2004
  • The Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on polymeric materials. An analysis method for rubber toughened PVC is suggested to evaluated critical dynamic strain energy release rates(G$_c$) from the Charpy impact tester was used to extract ancillary information concerning fracture parameters in additional to total fracture energies and maximum critical loads. The dynamic stress intensity factor KID was computed for varying amounts of rubber contents from the obtain maximum critical loads and also toughening effects were investigated as well. The fracture surfaces produced under low velocity impact for PVC/MBS composites were investigated by SEM. The results show that MBS rubber is very effective reinforcement material for toughening PVC.

  • PDF

안전필수 시스템을 위한 시간기반 MDA 아키텍처 모델링 (Time-Based MDA Architecture Modeling for Safety-Critical Systems)

  • 임유진;최은미
    • 정보화연구
    • /
    • 제9권4호
    • /
    • pp.443-453
    • /
    • 2012
  • 다양한 분야의 시스템들은 시스템 오류에 인한 피해의 최소화를 목적으로 안전필수 특성을 가지도록 요구된다. 본 논문에서, 안전필수 시스템으로 많이 연구되는 사이버물리시스템이 그 특성을 가지기위해 고려해야하는 이슈와 주요 요소인 시간을 기반으로 모델 지향 아키텍처에 대하여 논의한다. 메타모델링 접근 방식으로 마감시간, 전환상태와 기준치에 연결하여 시간 기반 아키텍처를 제시하고, 이를 모델지향 아키텍처를 이용하여 설계한다. 메타모델로부터 생성된 안전처리 모델과 함께 오류처리 컴포넌트를 사용하여 사이버 물리 시스템 및 시간기반 도메인에 적용 가능한 안전필수 아키텍처를 제시한다. 그리고 안전필수 시스템 설계 시 기본적 안전처리 상태, 다중적 상태, 복합적 상태를 통하여 세부적인 모델과 그 사례를 나타내었다.

CRITICAL FACTORS AFFECTING SAFETY IN THE SINGAPORE CONSTRUCTION INDUSTRY

  • Sze Ming Woo;Charles Y.J. Cheah;Wai Fan Wong
    • 국제학술발표논문집
    • /
    • The 2th International Conference on Construction Engineering and Project Management
    • /
    • pp.759-768
    • /
    • 2007
  • Construction is one of the most hazardous industries due to its unique nature. Recent occurrences of highly publicised and criticized construction site accidents have highlighted the immediate need for the construction industry to address safety hazards. Safety used to be addressed as an isolated issue in the past, but the problem of safety is an emergent property of a system. In general, it seems that both industrial practitioners and government officials have tended to address safety by focusing on technical aspects and looking for immediate causes of accidents after they have taken place. The objective of this paper is to examine issues and critical factors that affect the safety standards from a holistic point of view. The job of making worksites safe should not just fall squarely on the contractors but should be shared by all parties in the value chain of construction activities.

  • PDF

Effect of variation of water retention characteristics due to leachate circulation in municipal solid waste on landfill stability

  • M. Sina Mousavi;Yuan Feng;Jongwan Eun;Boo Hyun Nam
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.141-154
    • /
    • 2023
  • This study investigated the effect of water retention characteristics between aged and fresh Municipal Solid Waste (MSW) on the stability of the landfill. A series of transient numerical modeling for the slope of an MSW landfill was performed considering the variation of water retention characteristics due to leachate circulation. Four different scenarios were considered in this analysis depending on how to obtain hydraulic conductivity and the aging degree of materials. Unsaturated hydraulic properties of the MSW used for the modeling were evaluated through modified hanging column tests. Different water retention properties and various landfill conditions, such as subgrade stiffness, leachate injection frequency, and gas and leachate collection system, were considered to investigate the pore water distribution and slope stability. The stability analyses related to the factor of safety showed that unsaturated properties under those varied conditions significantly impacted the slope stability, where the factor of safety decreased, ranging between 9.4 and 22%. The aged materials resulted in a higher factor of safety than fresh materials; however, after 1000 days, the factor of safety decreased by around 10.6% due to pore pressure buildup. The analysis results indicated that using fresh materials yielded higher factor of safety values. The landfill subgrade was found to have a significant impact on the factor of safety, which resulted in an average of 34% lower factor of safety in soft subgrades. The results also revealed that a failed leachate collection system (e.g., clogging) could result in landfill failure (factor of safety < 1) after around 298 days, while the leachate recirculation frequency has no critical impact on stability. In addition, the accumulation of gas pressure within the waste body resulted in factor of safety reductions as high as 24%. It is essential to consider factors related to the unsaturated hydraulic properties in designing a landfill to prevent landfill instability.

Probabilistic analysis of anisotropic rock slope with reinforcement measures

  • Zoran Berisavljevic;Dusan Berisavljevic;Milos Marjanovic;Svetlana Melentijevic
    • Geomechanics and Engineering
    • /
    • 제34권3호
    • /
    • pp.285-301
    • /
    • 2023
  • During the construction of E75 highway through Grdelica gorge in Serbia, a major failure occurred in the zone of reinforced rock slope. Excavation was performed in highly anisotropic Paleozoic schist rock formation. The reinforcement consisted of the two rows of micropile wall with pre-stressed anchors. Forces in anchors were monitored with load cells while benchmarks were installed for superficial displacement measurements. The aim of the study is to investigate possible causes of instability considering different probability distributions of the strength of discontinuities and anchor bond strength by applying different optimization techniques for finding the critical failure surface. Even though the deterministic safety factor value is close to unity, the probability of failure is governed by variability of shear strength of anisotropic planes and optimization method used for locating the critical sliding surface. The Cuckoo search technique produces higher failure probabilities compared to the others. Depending on the assigned statistical distribution of input parameters, various performance functions of the factor of safety are obtained. The probability of failure is insensitive to the variation of bond strength. Different sampling techniques should yield similar results considering that the sufficient number of safety factor evaluations is chosen to achieve converged solution.

SENSITIVITY ANALYSIS OF SUV PARAMETERS ON ROLLOVER PROPENSITY

  • Jang, B.C.;Marimuthu, R.P.
    • International Journal of Automotive Technology
    • /
    • 제7권6호
    • /
    • pp.703-714
    • /
    • 2006
  • The growing concern surrounding rollover incidences and consequences of Sports Utility Vehicles(SUV) have prompted to investigate the sensitivity of critical vehicle parameters on rollover. In this paper, dynamic rollover simulation of Sports Utility Vehicles is carried out using a validated nonlinear vehicle model in Matlab/Simulink. A standard model is considered and critical vehicle parameters like CG height, track width and wheel base are varied within chosen specified limits to study its influence on roll behavior during a Fishhook steering maneuver. A roll stability criterion based on Two Wheel Lift Off(TWLO) phenomenon is adopted for rollover propensity prediction. Further dynamic rollover characteristics of the vehicle are correlated with Static Stability Factor(SSF), Roll Stability Factor(RSF) and Two Wheel Lift Off Velocity(TWLV). These findings will be of immense help to SUV chassis designers to determine safety limits of critical vehicle parameters and minimize rollover incidences.