• Title/Summary/Keyword: critical exposure variables

Search Result 17, Processing Time 0.026 seconds

Exploratory Study on Causality of Foreign Exchange Exposure and Hedge Strategy: Systems Thinking Approach (환노출과 환노출 완화 전략의 인과관계에 관한 탐색적 연구 : 시스템 사고에 의한 접근)

  • Eom, Jae-Gun;Chung, Chang-Kwon;Sul, Wonsik
    • Korean System Dynamics Review
    • /
    • v.15 no.2
    • /
    • pp.97-131
    • /
    • 2014
  • The purpose of this study is to analyze Foreign Exchange(FX) exposure and FX hedge strategy based on the systems thinking perspective using causal loop diagrams. FX exposure has been a critical issue on a business management. Many studies in Korea have researches on variables which make effects to the company value. This study displays causal loop diagrams(CLDs) on these issues. In order to make CLD more objective, most causalities are articulated from recent 72 studies (1998~2013) of domestic top journals. This approach is valuable in that it is the first try to draw all the causalities from various literature review regarding FX exposure and FX hedge strategy. This study is expected to make a useful and basic material to research the financial issues of corporate, as the first research to dynamically understand FX exposure and FX hedge strategy.

  • PDF

Evaluation of Residential Radiation Doses from Korean Atomic Power Plants - Effect of Socioenvironmental Inputs (국내 원전주변 주민 방사선 피폭선량 평가 - 입력변수의 영향)

  • 조대철;이갑복
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.223-229
    • /
    • 2003
  • Annual radiation dose of residential individuals near 4 nuclear power plants in Korea was calculated via K-DOSE 60 based on the updated ICRP-60. The critical exposure variables were chosen as radionuclides, exposed organs and intake pathways. From the calculation results, the critical nuclides were found to be $^3$H, $^{133}$ Xe, $^{60}$ Co for Kori plants and $^{14}$ C, $^{41}$ Ar for Wolsung plants. The most critical pathway was 'vegetable intake' for adults and 'milk intake' for infants. However, there was no preference in the effective organs. Sensitivity analyses showed that the chemical composition in a nuclide much more influenced upon the radiation dose than any other input parameters such as food intake, radiation discharge, and transfer/concentration coefficients by more than 10$^2$ factor. The effect of transfer/concentration coefficients on the radiation dose was negligible. All input parameters showed highly estimated correlation with the radiation dose, approxinated to 1.0.

  • PDF

Assessing the Potential Impact of Climate Change on Irrigation by Reservoir (농업용 저수지의 농업가뭄에 대한 기후변화 잠재영향 평가)

  • Kim, Soo-Jin;Hwang, Syewoon;Bae, Seung-Jong;Yoo, Seunghwan;Choi, Jin-Yong;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.141-150
    • /
    • 2021
  • In order to assess the impact of climate change on irrigation reservoirs, climate exposure (EI), sensitivity (SI), and potential impact (PI) were evaluated for 1,651 reservoirs nationwide. Climate exposure and sensitivity by each reservoir were calculated using data collected from 2011 to 2020 for seven proxy variables (e.g. annual rainfall) and six proxy variables (e.g. irrigation days), respectively. The potential impact was calculated as the weighted sum of climate exposure and sensitivity, and was classified into four levels: 'Low (PI<0.4)', 'Medium (PI<0.6)', 'High (PI<0.8)', and 'Critical (PI≥0.8)'. The result showed that both the climate exposure index and the sensitivity index were on average high in Daegu and Gyeongbuk with high temperature and low rainfall. About 79.8% of irrigation reservoirs in Daegu, Gyeongbuk, and Ulsan with high climate exposure and sensitivity resulted in a 'High' level of potential impact. On the contrary, 64.5% of the study reservoirs in Gyeongnam and Gangwon showed 'Low' in potential impact. In further studies, it is required to reorganize the proxy variables and the weights in accordance with practical alternatives for improving adaptive capacity to drought, and it is expected to contribute to establishing a framework for vulnerability assessment of an irrigation reservoir.

Significant Parameters for Assessing Soil Contaminant-Leaching to Groundwater and Determining Soil Sample Size in Field Survey

  • Jeong, Seung-Woo;An, Youn-Joo
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.73-78
    • /
    • 2008
  • For a given soil-contaminated site, a level of soil contamination is characterized and decisions on risk may be made from the risk assessment. The study evaluated critical design factors for the determination of sample size in the sampling design plan and the assessment of soil contaminant- leaching to groundwater. Two variables, the minimum relative detectable difference (T) and coefficient of variation (CV) were evaluated for the sample size determination. The minimum number of samples can be appropriately determined by CV under a T value greater than or equal to 0.2. Soil-contaminant leaching to groundwater was evaluated by using the Soil Screening Level equation of U.S. Environmental Protection Agency and the Risk Based Screening Level equation of American Society for Testing and Materials, with the same input parameters. The groundwater concentrations estimated from soil contaminant concentrations were significantly affected by the Darcy velocity of groundwater and the organic content of soil.

Development of a Machine Learning-Based Model for the Prediction of Chloride Diffusion Coefficient Using Concrete Bridge Data Exposed to Marine Environments (기계학습 기반 해양 노출 환경의 콘크리트 교량 데이터를 활용한 염화물 확산계수 예측모델 개발)

  • Woo-Suk Nam;Hong-Jae Yim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.20-29
    • /
    • 2024
  • The chloride diffusion coefficient is a critical indicator for assessing the durability of concrete marine substructures. This study develops a prediction model for the chloride diffusion coefficient using data from concrete bridges located in marine exposure zones (atmospheric, splash, tidal), an aspect that has not been considered in previous studies. Chloride profile data obtained from these bridge substructures were utilized. After data preprocessing, machine learning models, including Random Forest (RF), Gradient Boosting Machine (GBM), and K-Nearest Neighbors (KNN), were optimized through hyperparameter tuning. The performance of these models was developed and compared under three different variable sets. The first model uses six variables: water-to-binder (W/B) ratio, cement type, coarse aggregate volume ratio, service life, strength, and exposure environment. The second model excludes the exposure environment, using only the remaining five variables. The third model relies on just three variables: service life, strength, and exposure environment factors that can be obtained from precision safety diagnostics. The results indicate that including the exposure environment significantly enhances model performance for predicting the chloride diffusion coefficient in concrete bridges in marine environments. Additionally, the three variable model demonstrates that effective predictions can be made using only data from precision safety diagnostics.

Advanced Process Control of the Critical Dimension in Photolithography

  • Wu, Chien-Feng;Hung, Chih-Ming;Chen, Juhn-Horng;Lee, An-Chen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.12-18
    • /
    • 2008
  • This paper describes two run-to-run controllers, a nonlinear multiple exponential-weight moving-average (NMEWMA) controller and a dynamic model-tuning minimum-variance (DMTMV) controller, for photolithography processes. The relationships between the input recipes (exposure dose and focus) and output variables (critical dimensions) were formed using an experimental design method, and the photolithography process model was built using a multiple regression analysis. Both the NMEWMA and DMTMV controllers could update the process model and obtain the optimal recipes for the next run. Quantified improvements were obtained from simulations and real photolithography processes.

Linear accuracy of cone-beam computed tomography and a 3-dimensional facial scanning system: An anthropomorphic phantom study

  • Oh, Song Hee;Kang, Ju Hee;Seo, Yu-Kyeong;Lee, Sae Rom;Choi, Hwa-Young;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.48 no.2
    • /
    • pp.111-119
    • /
    • 2018
  • Purpose: This study was conducted to evaluate the accuracy of linear measurements of 3-dimensional (3D) images generated by cone-beam computed tomography (CBCT) and facial scanning systems, and to assess the effect of scanning parameters, such as CBCT exposure settings, on image quality. Materials and Methods: CBCT and facial scanning images of an anthropomorphic phantom showing 13 soft-tissue anatomical landmarks were used in the study. The distances between the anatomical landmarks on the phantom were measured to obtain a reference for evaluating the accuracy of the 3D facial soft-tissue images. The distances between the 3D image landmarks were measured using a 3D distance measurement tool. The effect of scanning parameters on CBCT image quality was evaluated by visually comparing images acquired under different exposure conditions, but at a constant threshold. Results: Comparison of the repeated direct phantom and image-based measurements revealed good reproducibility. There were no significant differences between the direct phantom and image-based measurements of the CBCT surface volume-rendered images. Five of the 15 measurements of the 3D facial scans were found to be significantly different from their corresponding direct phantom measurements(P<.05). The quality of the CBCT surface volume-rendered images acquired at a constant threshold varied across different exposure conditions. Conclusion: These results proved that existing 3D imaging techniques were satisfactorily accurate for clinical applications, and that optimizing the variables that affected image quality, such as the exposure parameters, was critical for image acquisition.

Effects of the Manner of Deleting Typical Items in a Scene on False Memory (풍경 그림에서 전형적인 정보의 삭제 방법이 오기억에 미치는 영향)

  • Do, Kyung-Soo;Bae, Kyung-Sue
    • Korean Journal of Cognitive Science
    • /
    • v.18 no.2
    • /
    • pp.113-138
    • /
    • 2007
  • The effects of schema on accurate and false memories of items in a scene were investigated in two experiments: Recognition of items in a scene was tested immediately in Experiment 1 and three days later in Experiment 2. In both experiments, the following three variables were manipulated: Exposure time (250ms or 10000ms), picture mode (completed pictures or scrambled pictures), and manipulation mode (missing item or substituted item). Experiment 1 had yielded three important results: First, although accurate memory for presented items got increased when the exposure time was longer, false memory of the critical lures was not changed. Second, false memory of critical lures in the missing condition, where there was not any conflict between verbatim information and gist information, was higher than that of the substituted condition, where verbatim information of the item that replaced the lure was in conflict with the gist information. Third, accurate memory for atypical items in the substituted rendition, which had replaced the critical lures and in conflict with the schema, was higher than that in the missing condition. In Experiment 2, recognition test were administered 72 hours after the participants saw the picture. The three effects mentioned in Experiment 1 had disappeared in Experiment 2. The results of Experiment 2 might be due to the selective weakening of verbatim information compared to the persistence of the gist (or schematic) information. The results of Experiments 1 and 2 showed that false memory of critical lures is more persistent than the accurate memory of non-critical information. Theoretical implications of the results were considered in terms of the function of the verbatim and gist information.

  • PDF

Generation of Laser Scan Path Considering Resin Solidification Phenomenon in Micro-stereolithography Technology (마이크로 광 조형기술에서 수지경화현상을 고려한 레이저 주사경로 생성)

  • 조윤형;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1037-1040
    • /
    • 2002
  • In micro-stereolithography technology, fabrication conditions that include laser power, laser scan speed, laser scan pitch, and material property of photopolymer such as penetration depth and critical exposure are considered as major process variables. But the existing scan path generation methods based only on CAD model have not taken them into account, which has resulted in cross-section dimension of low accuracy. Thus, to enhance cross-section dimensional accuracy, the physical resin solidification n phenomena should be reflected in laser scan path generation and stage operating code. In this paper, multi-line experiments based on single line solidification model are performed. And the method for improving cross-section dimensional accuracy is presented, which is to apply the database based on experimental results to laser scan path generation.

  • PDF

Factors Related to Smoking Status Among Young Adults: An Analysis of Younger and Older Young Adults in Korea

  • Lee, Yeji;Lee, Kang-Sook
    • Journal of Preventive Medicine and Public Health
    • /
    • v.52 no.2
    • /
    • pp.92-100
    • /
    • 2019
  • Objectives: Young adulthood represents a critical developmental period during which the use of tobacco may begin or cease. Furthermore, differences in smoking behaviors between younger (aged 18-24 years) and older (aged 25-34 years) young adults may exist. This study aimed to characterize patterns related to current smoking in younger and older young adults. Methods: This study used data acquired from the Sixth Korea National Health and Nutrition Examination Survey conducted from 2013 to 2014. A total of 2069 subjects were categorized as younger (712 subjects) and older (1357 subjects) young adults. The chi-square test was used to assess the relationships between smoking status and socio-demographic, health-related, and smoking-related factors. Multivariable logistic regression models were constructed to assess the factors affecting current smoking in these age groups. Results: The current smoking prevalence was 18.3% among the younger young adults and 26.0% among the older young adults. Sex, education level, occupation, perceived health status, alcohol consumption, and electronic cigarette use were related to current smoking in both age groups. Secondhand smoke exposure at home and stress levels showed significant relationships with smoking in younger and older young adults, respectively. Conclusions: Strong correlations were found between the observed variables and smoking behaviors among young adults. Determining the factors affecting smoking and designing interventions based on these factors are essential for smoking cessation in young adults.