• Title/Summary/Keyword: critical design

Search Result 4,475, Processing Time 0.036 seconds

Optimization of Two Plate Girders Bridge (2주형 판형교의 최적설계)

  • 김건희;유선미;조선규
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.690-695
    • /
    • 2002
  • Two plate girders bridge has an advantage for execution of works and quality control because of its simplicity of super-structure caused by decreasing in amount of members and also is distinguished as aesthetic bridge type. Recently this has been adopted for structure of highway as well railway and introduced into domestic. In order to plan or design two plate girders bridge more rationably, it is necessary to comprehend its structural behavior as well as to consider the critical resign factors. Thus, in this study the formulation of optimum design for two plate girders bridge is proposed and the critical resign variables ani restraints are considered and founded by caring out optimum design. The objective function of optimization is formulated as a minimum cost design problem. And the thickness and length of I-shaped section are decided as resign variables. The design constraints are formulated based on Design Criteria for Railroad(Bridges). By comparing the optimum results with those of the conventional resign, the effectiveness of proposed optimum design formulation is investigated. From the results, the way to do optimum design of two plate girders bridge is suggested.

  • PDF

Rotordynamic Design of a LOX Pump for a 75 Ton Class Liquid Rocket Engine (75톤급 액체로켓 엔진용 산화제 펌프 회전체 동역학 설계)

  • Jeon, Seong-Min;Kwak, Hyun-D.;Yoon, Suk-Hwan;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.205-210
    • /
    • 2007
  • A LOX pump rotordynamic design was performed for a 75 ton thrust liquid rocket engine. Axial positions of an inducer, an impeller and bearings on a shaft are decided on the basis of the experience achieved by previously developed turbopump which has the similar layout. The result of pump hydraulic design was reflected in the present study to decide axial length of the inducer and impeller. A distance from the rear bearing to the impeller was considered as a design parameter for load distribution of the bearings. Asynchronous eigenvalue analysis was performed as a function of rotating speeds and bearing stiffness to investigate critical speed of the LOX pump. From the numerical analysis, it is found that the LOX pump with the proper bearing loads safely operates as a sub-critical rotor of which critical speed is high enough compared to the operating speed 11,000 rpm.

  • PDF

Effects of Duration and Time Distribution of Probability Rainfall on Paddy Fields Inundation (설계강우의 지속시간 및 시간분포에 따른 배수개선 농경지 침수 영향 분석)

  • Jun, Sang-Min;Kim, Kwi-Hoon;Lee, Hyunji;Kang, Ki-Ho;Yoo, Seung-Hwan;Choi, Jin-Yong;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.47-55
    • /
    • 2022
  • The objective of this study was to analyze the effect of the duration and time distribution of probability rainfall on farmland inundation for the paddy fields in the drainage improvement project site. In this study, eight drainage improvement project sites were selected for inundation modeling. Hourly rainfall data were collected, and 20- and 30-year frequency probability rainfalls were estimated for 14 different durations. Probability rainfalls were distributed using Intensity-Duration-Frequency (IDF) and Huff time distribution methods. Design floods were calculated for 48 hr and critical duration, and IDF time distribution and Huff time distribution were used for 48 hr duration and critical duration, respectively. Inundation modeling was carried out for each study district using 48 hr and critical duration rainfalls. The result showed that six of the eight districts had a larger flood discharge using the method of applying critical duration and Huff distribution. The results of inundation depth analysis showed similar trends to those of design flood calculations. However, the inundation durations showed different tendencies from the inundation depth. The IDF time distribution is a distribution in which most of the rainfall is concentrated at the beginning of rainfall, and the theoretical background is unclear. It is considered desirable to apply critical duration and Huff time distribution to agricultural production infrastructure design standards in consideration of uniformity with other design standards such as flood calculation standard guidelines.

Determination of Critical Swimming Velocity for Crucian Carp for Fishway Design (어도 설계를 위한 붕어의 한계유영유속 결정 연구)

  • Se Won Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.258-265
    • /
    • 2023
  • Fishways installed in Korea usually generate high-velocity flows and low water depth that impede fish movement, despite the fact that most fish are migratory or move to survive. Moreover, domestic design standards for fishways fail to consider the swimming ability of various fish species that live in rivers. Therefore, it is necessary to establish design standards for fishways to function properly, which requires research on the swimming performance of domestic migratory fish and the hydraulic characteristics of fishways. Accordingly, in this research, the swimming performance of fish was objectively analyzed by applying the incremental velocity and fixed velocity methods to carp, respectively, and the critical swimming velocity was presented. As the result, it was appropriate to set the critical swimming velocity to 0.7 m/s - 0.8 m/s for incremental velocity and 0.8 m/s for fixed velocity. Comprehensively analyzing the two experimental methods, the critical swimming velocity for designing the fishway for carp can be determined to be about 0.8 m/s. In the future, it will be necessary to analyze the swimming performance of various migratory fish and prepare fishway design standards for each species.

Iron Core Design of 3-Phase 40MVA HTS Power Transformer Considering Voltages per Turn

  • Lee, Chan-joo;Seok, Bok-yeol
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.54-58
    • /
    • 2004
  • This paper presents the iron core design method of a high temperature superconducting (HTS) transformer considering voltages per turn (V/T). In this research, solenoid type HTS coils were selected for low voltage (LV) winding and double pancake coils for high voltage (HV) winding, just as in conventional large power transformers. V/T is one of the most fundamental elements used in designing transformers, as it decides the core cross sectional area and the number of primary and secondary winding turns. By controlling the V/T, the core dimension and core loss can be changed diversely. The leakage flux is another serious consideration in core design. The magnetic field perpendicular to the HTS wire causes its critical current to fall rapidly as the magnitude of the field increases slowly. Therefore in the design of iron core as well as superconducting windings, contemplation of leakage flux should be preceded. In this paper, the relationship between the V/T and core loss was observed and also, through computational calculations, the leakage magnetic fields perpendicular to the windings were found and their critical current decrement effects were considered in relation to the core design. The % impedance was calculated by way of the numerical method. Finally, various models were suggested.

Vibration Characteristics of High Speed Rotary Bell Cup (고속 회전 벨 컵의 진동 특성)

  • Sohn, Jung Woo;Park, Ji Hoon;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.771-778
    • /
    • 2015
  • In this work, vibration characteristics of high speed rotary bell cup for paint atomizer are numerically investigated. New type of bell cup model is proposed and additional corresponding models with design parameter variations for length and diameter are constructed. Dynamic characteristics, such as natural frequencies and corresponding mode shapes, are studied for each model as a first step. To investigate operation stability, critical speed of rotary bell cup is numerically analyzed based on Campbell diagram and separation margin between operating speed and critical speed is identified. Unbalance vibration responses are also investigated with respect to design parameter variation, operating speed and balancing quality grade of G. Then the proper design guideline for stable operation of high speed rotary bell cup for paint atomizer is suggested.

Validation Testing of Safety-critical Software (Safety-critical 소프트웨어의 검증시험)

  • Kim, Hang-Bae;Han, Jai-Bok
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.385-392
    • /
    • 1995
  • A software engineering process has been developed for the design of safety critical software for Wolsong 2/3/4 project to satisfy the requirement of the regulatory body. Among the process, this paper described the detail process of validation testing peformed to ensure that the software with its hardware, developed by the design group, satisfies the requirements of the functional specification prepared by the independent functional group. To perform the test, test facility and test software ore developed and actual safety system computer was connected. Three kinds of test cases, i.e., functional test performance test and self-check test were programmed and run to verify each functional specifications. Test failures ore fedback to the design group to revise the software and test result were analyzed and documented in the report to submit to the regulatory body. The test methodology and procedure were very efficient and satisfactory to perform the systematic and automatic test. The test results were also acceptable and successful to verify the software acts as specified in the program functional specification. This methodology can be applied to the validation of other safety-critical software.

  • PDF

Evaluation of Critical Speed for Active Steering Bogie Prototype (능동형 시제 조향대차의 임계속도 평가)

  • Hur, Hyun Moo;Park, Joon-Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.205-210
    • /
    • 2017
  • Critical speed analysis was conducted for a active steering bogie prototype, developed to improve the curving performance of railway vehicles. The critical speed for the design concept was about 169.2k m/h. To validate the analysis result, we performed a critical speed test for the prototype bogie using a roller-rig tester. The test results showed that the critical speed for the prototype bogie was about 165 km/h. From the analysis and test results, The critical speed for the prototype bogie was determined to be 165 km/h. Considering the maximum operating speed of the test vehicle is 100 km/h, the prototype bogie is considered stable.

Application of Critical Damage Value to Continuous Drawing Process using FEM (연속 인발공정에서 유한요소법을 이용한 Critical Damage Value 의 적용)

  • 박동인;김병민;고대철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.291-295
    • /
    • 2003
  • The occurrence of ductile fracture is the working limit of many metal forming processes. It is necessary to predict the criteria and to apply the condition in a process design. Over the years. the way for clarifying conditions have been studied and presented. However such a way needs lots of experiments and analysis. In this study, in order to determine the critical damage value of a used material Cu 4N, it was performed a tensile test and FEM analysis by using DEFORM 2D. For applying the obtained critical damage value it was also performed a upsetting test by using DEFORM 2D. The way of determining a critical damage value which is presented in this study will make possible to find easily it which is one of the working limit factor. And the way of determining a critical damage value will make possible to find in multi-pass drawing process.

  • PDF

A study on the Critical speed of Korean Tilting Train (한국형 틸팅열차의 임계속도에 관한 연구)

  • Kim, Nam-Po;Kim, Jung-Seok;Park, Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.162-168
    • /
    • 2007
  • The critical speed above which the vehicle become unstable should be fundamentally verified in the development of new train. In case of high speed tilting train, which require both higher critical speed and higher curving speed, the critical speed should be more carefully treated because the both requirements are conflicting each other in the conventional train design. This research has been performed to estimate the linear and non-linear critical speed of 200km/h Korean Tilting Train which has been developing. The newly developed self-steering mechanism was attached to the tilting train to secure critical speed under the lower yaw stiffness which was inevitable to secure higher curving performance. The simulation to predict critical speed was done by commercial vehicle dynamic S/W. Full scale roller rig test was carried out for the validation of numerical results and effectiveness of self-steering mechanism.

  • PDF