• Title/Summary/Keyword: critical current ratio

Search Result 174, Processing Time 0.023 seconds

Angular dependence of critical current of SmBCO coated conductor fabricated by co-evaporation method

  • Kim, Ho-Sup;Ha, Hong-Soo;Oh, Sang-Soo;Song, Kyu-Jeong;Ko, Rock-Kil;Ha, Dong-Woo;Kim, Tae-Hyung;Youm, Do-Jun;Lee, Nam-Jin;Moon, Seung-Hyun;Yoo, Sang-Im;Park, Chan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.2
    • /
    • pp.16-19
    • /
    • 2008
  • Angular dependence of critical current density of SmBCO coated conductor fabricated by co-evaporation method was investigated. For comparison, three samples were fabricated by a co-evaporation method and one sample was fabricated by a pulsed laser deposition process. The deposition system, named EDDC (Evaporation using Drum in Dual Chambers), is a batch type co-evaporation system, which is composed of reaction chamber and evaporation chamber. The normalized critical current density ratio ($I_c/I_c$(H//ab-plane)) of EDDC-SmBCO samples was found to be higher than that of PLD-YBCO sample in the whole range of angle. While the EDDC-SmBCO samples evidently had a peak at the angle of H//c-axis in the plot of the angular dependence of critical current, the normalized critical current of PLD-YBCO sample decreased monotonically without any peak as angle increased. The field dependence of critical current under the magnetic field parallel to the normal direction of those samples showed similar aspect in the range of $0\;G{\sim}5000\;G$.

Analysis on Hysteresis Characteristics of a Transformer Type Superconducting Fault Current Limiter (변압기형 초전도전류제한기의 히스테리시스 특성 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.164-168
    • /
    • 2010
  • The transformer is expected to be an essential component of a superconducting fault current limiter (SFCL) for both the increase of its voltage ratings and the simultaneous quench due to different critical current between high-$T_C$ superconducting (HTSC) elements comprising the SFCL. However, in order to perform the effective current limiting operation of the SFCL, the design for the SFCL considering the hysteresis characteristics of the iron core is required. In this paper, the influence of the hysteresis characteristics of the iron core comprising the transformer type SFCL on its current limiting characteristics was investigated. Through the comparative analysis on the hysteresis curves due to the ratio of the turn number between the 1st and the 2nd windings of the transformer, the proper design condition for the ratio of the turn number to achieve the effective current limiting operation of the transformer type SFCL could be obtained.

An E-capless AC-DC CRM Flyback LED Driver with Variable On-time Control

  • Yao, Kai;Bi, Xiaopeng;Yang, Siwen
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.315-322
    • /
    • 2017
  • LED is a promising new generation of green lighting with the advantages of high efficiency, good optical performance, long lifetime and environmental friendliness. A pulsating current can be used to drive LEDs. However, current with a high peak-to-average ratio is unfavorable for LEDs. A novel control scheme for the ac-dc critical conduction mode (CRM) flyback LED driver is proposed in this paper. By using the input voltage, output voltage and average output current to control the turn-on time of the switch, the peak-to-average ratio of the output current can be reduced. The operation principle is analyzed and an implementation circuit is put forward. Experimental results show the effectiveness of the proposed scheme.

Operating Current Characteristics of a kA Class Conductor for a SMES device (SMES용 kA급 초전도도체의 운전전류 특성)

  • 류경우;최병주;김해종;성기철
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.3-6
    • /
    • 2003
  • We have developed a small-sized superconducting magnetic energy storage (SMES) device, which provides electric power with high quality to sensitive electric loads. In large magnets such as the SMES magnets the stability, which is determined by several factors, e.g. conductors cooling condition and operating current, magnets winding structure, is a crucial problem. The effect of the cooling condition, the copper ratio, and the conductor's size upon the recovery currents was investigated experimentally. The results indicate that the recovery current characteristics of the strands vary considerably according to their insulation method. In the fully insulated strands with a low copper ratio, the recovery current densities range from 10 to 20 % of their engineering critical current densities. The recovery current density of the 30-conductor with a cooling channel is about a factor of 1.8 higher than that without a cooling channel.

  • PDF

Stability of superconductor by integration formula

  • Seol, S.Y.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.1-5
    • /
    • 2019
  • The superconductor stability theories are consistently described by the integral formula. If the defined stability function is a simple decreasing function, it becomes a cryogenic stability condition. If the stability function has a maximum value and a minimum value, and the maximum value is less than 0, then it is a cold-end recovery condition. If the maximum value is more than 0, it can be shown that the unstable equilibrium temperature, that is, the MPZ (minimum propagation zone) temperature distribution can exist. The MPZ region is divided into two regions according to the current ratio. At the low current ratio, the maximum dimensionless temperature is greater than 1, and at the relatively high current ratio, the maximum dimensionless temperature is less than 1. In order to predict the minimum quench energy, the dimensionless energy was obtained for the MPZ temperature distribution. In particular, it was shown that the dimensionless energy can be obtained even when the MPZ maximum temperature is 1 or more.

Numerical Analysis of NDR characteristics in resonant tunneling diodes with AllnAs/GaInAs Structure (AlIanAs/GaInAS계 공명터널링 다이오드의 부성저항 특성에 관한 수치 해석)

  • Kim, SeongJeen
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.7
    • /
    • pp.51-57
    • /
    • 1995
  • The theoretical analysis for AlInAs/GaInAs resonant tunneling diodes (RTDs), which have shown the improved negative differential resistance (NDR) characteristics, has scarcely been made in comparison with AlGaAS/GaAs RTDs. In this paper, the static current-voltage relation of Al$_{0.48}In_{0.52}As/Ga_{0.47}In_{0.53}$As RTDs were numerically estimated by using a self-consistent method. Assuming a simplified RTD with single quantum well structure and spacer layers, the peak current density (J$_{P}$) and the peak-to-valley current ratio (PVCR) were analysed as the function of the thickness of the well, the barrier and the spacer layer, and temperature. As the results, the peak current density and the peak-to-valley current ratio indicated a reciprocal relation roughly in respect to the thicknesses of the well and the barrier, and it was theoretically predicted that it be not attainable to provide a high peak current desity (J$_{P}$) over 1${\times}10^{5}A/cm^{2}$ as well as the large peak-to-valley current ratio (PVCR) over 10 that were the the critical conditions for the practical use.

  • PDF

Bidirectional Quasi-Cuk DC/DC Converter with Reduced Voltage Stress on Capacitor and Capability of Changing the Output Polarity

  • Asl, Elias Shokati;Sabahi, Mehran
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1108-1113
    • /
    • 2017
  • In this paper, a bidirectional topology for quasi-Cuk dc/dc converter with capability of zero-voltage and zero-current-switching (ZVZCS) is proposed. The bidirectional quasi-Cuk (BQ-Cuk) converter has different voltage and current transfer ratio, reduced voltage stress on capacitor and capability of changing the output polarity in comparison with conventional bidirectional Cuk converter. In this paper, steady-state analysis of the quasi-Cuk converter with capability of ZVZCS in turn-on is presented. Then, critical inductances for transient from this operation to two new operations are calculated. Next, besides values designing of used elements, maximum and minimum value of their current and voltage are calculated. Finally, experimental results to verify the accuracy of the proposed converter in different operating modes are presented.

Fabrication of YB $a_2$C $u_3$ $O_{7-x}$ film on a (100) SrTi $O_3$ single crystal substrate by single liquid source MOCVD method ((100) SrTi $O_3$ 단결정 기판위에 단일 액상 원료 MOCVD 법에 의한 YB $a_2$C $u_3$ $O_{7-x}$ 박막 제조)

  • Jun Byung-Hyuk;Choi Jun-Kyu;Kim Ho-Jin;Kim Chan-Joong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.16-20
    • /
    • 2004
  • YB $a_2$C $u_3$$O_{7-x}$ (YBCO) films were deposited on (100) SrTi $O_3$ single crystal substrates by a metal organic chemical vapor deposition (MOCVD) system of hot-wall type using single liquid source. Under the condition of the mole ratio of Y(tmhd)$_3$:Ba(tmhd)$_2$:Cu(tmhd)$_2$= 1:2.1:2.9. the deposition pressure of 10 Torr. the MO source line speed of 15 cm/min. the Ar/ $O_2$ flow rate of 800/800 sccm. YBCO films were prepared at the deposition temperatures of 780∼89$0^{\circ}C$. In case of the YBCO films with 2.2 ${\mu}{\textrm}{m}$ thickness deposited for 6 minutes at 86$0^{\circ}C$. XRD pattern showed complete c-axis growth and SEM morphology showed dense and crack-free surface. The atomic ratios of Ba/Y and Cu/Ba in the film were 1.92 and 1.56. respectively. The deposition rate of the film was as high as 0.37 ${\mu}{\textrm}{m}$/min. The critical temperature ( $T_{c.zero}$) of the film was 87K. The critical current of the film was 104 A/cm-width. and the critical current density was 0.47 MA/$\textrm{cm}^2$. For the thinner film of 1.3 ${\mu}{\textrm}{m}$ thickness. the critical current density of 0.62 MA/$\textrm{cm}^2$ was obtained.d.

Effect of open Mg sintering ambiance on the in-field critical current density of ex-situ MgB2

  • Sinha, Bhavesh B.;Jang, S.H.;Chung, Kookchae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.12-15
    • /
    • 2012
  • $MgB_2$ superconductor is highly sensitive to the Mg content. Even if the samples are synthesized with the appropriate looking stoichiometric ratio, the heat treatment leads to the loss of Mg either to ambiance or to MgO. To avoid it, either excess Mg is added in the starting powder or sealed ampoule annealing is employed. In this paper the effect of open Mg sintering ambiance on the ex-situ $MgB_2$ was studied to enhance its superconducting properties. The open Mg ambiance was created to avoid any overpressure of Mg by providing a hole in Fe tube used as sample holder. The decrease in resistivity of the synthesized sample was observed through the increased temperature dependence of electron-phonon interactions. A clear enhancement in the superconducting cross-sectional area and hence the in-field critical current density is obtained.

Effects of Non-uniform Pollution on the AC Flashover Performance of Suspension Insulators

  • Zhijin, Zhang;Jiayao, Zhao;Donghong, Wei;Xingliang, Jiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.961-968
    • /
    • 2016
  • The non-uniform distribution of contamination on insulator surface has appreciable effects on flashover voltage, and corresponding researches are valuable for the better selection of outdoor insulation. In this paper, two typical types of porcelain and glass insulators which are widely used in ac lines were taken as the research subjects, and their corrections of AC flashover voltage under non-uniform pollution were studied. Besides, their flashover characteristics under different ratio (T/B) of top to bottom surface salt deposit density (SDD) were investigated, including the analysis of flashover voltage, surface pollution layer conductivity and critical leakage current. Test results gave the modified formulas for predicting flashover voltage of the two samples, which can be directly applied in the transmission line design. Also, the analysis delivered that, the basic reason why the flashover voltage increases with the decrease of T/B, is due to the decrease of equivalent surface conductivity of the whole surface and the decrease of critical leakage current. This research will be of certain value in providing references for outdoor insulation selection, as well as in proposing more information for revealing pollution flashover mechanism.