본 논문에서는 내용 기반 음악 범주 분류 시스템에서 다중 범주를 위한 특징벡터 선택 알고리즘을 제안한다. 제안된 특징벡터 선택 알고리즘은 분리 성능을 측정할 때 가우시안 혼합 모델(Gaussian Mixture Model: GMM)을 기반으로 GMM separation score을 측정함으로써 확률분포 및 분리 성능 추정의 정확도를 높였고, sequential forward selection 방법을 개선하여 이전까지 선택된 특징벡터들이 분리를 잘 하지 못하는 범주들을 기준으로 다음 특징벡터를 선택하는 알고리즘을 제안하여 다중 범주 분류의 성능을 높였다. 제안된 알고리즘의 성능 검증을 위해 음색, 리듬, 피치 등 오디오 신호의 특징을 나타내는 다양한 파라미터를 오디오 신호로부터 추출하여 제안된 특징벡터 선택 알고리즘과 기존의 알고리즘으로 특징벡터를 선택한 후 GMM classifier와 k-NN classifier를 이용하여 분류 성능을 평가하였다. 제안된 특징벡터 선택 알고리즘은 기존 알고리즘에 비하여 3%에서 8% 정도의 분류 성능이 향상된 것을 확인할 수 있었고 특히 낮은 차원의 특징벡터의 분류 실험에서는 분류 정확도 측면에서 5%에서 10% 향상된 좋은 성능을 보였다.
한국방송공학회 1998년도 Proceedings of International Workshop on Advanced Image Technology
/
pp.165-170
/
1998
This paper presents a new prediction method RBP region-based prediction model where the context used for prediction contains regions instead of individual pixels. There is a meaningful property that RBP can partition a cartoon image into two distinctive types of regions, one containing full-color backgrounds and the other containing boundaries, edges and home-chromatic areas. With the development of computer techniques, synthetic images created with CG (computer graphics) becomes attactive. Like the demand on data compression, it is imperative to efficiently compress synthetic images such as cartoon animation generated with CG for storage of finite capacity and transmission of narrow bandwidth. This paper a lossy compression method to full-color regions and a lossless compression method to homo-chromatic and boundaries regions. Two criteria for partitioning are described, constant criterion and variable criterion. The latter criterion, in form of a linear function, gives the different threshold for classification in terms of contents of the image of interest. We carry out experiments by applying our method to a sequence of cartoon animation. We carry out experiments by applying our method to a sequence of cartoon animation. Compared with the available image compression standard MPEG-1, our method gives the superior results in both compression ratio and complexity.
The art psychotherapy expert system is a computer system which helps to analyse one's psychology through pictures. However we need a standard criterion because the psychology, the target of the art psychotherapy, does not only have a ambiguous criterion but also a vast range. We're going to suggest a criterion in the field of the art psychotherapy by constructing systematic database through knowledge acquirement of the art psychotherapy expert system. In this study we introduce a system which enables systematic classification and confirmation of symptoms according to mental analyses. The suggested system enables confirmation of a classical structure and systematic classification of knowledges through conversation by extracting nouns through sentence analysis from the knowledge of descriptive form based on the clinical purpose of sentence analysis.
International journal of advanced smart convergence
/
제9권4호
/
pp.192-197
/
2020
In this study, we try to find ways to recognize face recognition more stably and to improve the effectiveness and reliability of face recognition. In order to improve the face recognition rate, a lot of data must be used, but that does not necessarily mean that the recognition rate is improved. Another criterion for improving the recognition rate can be seen that the top/bottom of the recognition rate is determined depending on how accurately or precisely the degree of classification of the data to be used is made. There are various methods for classification analysis, but in this study, classification analysis is performed using a support vector machine (SVM). In this study, feature information is extracted using a normalized image with rotation information, and then projected onto the eigenspace to investigate the relationship between the feature values through the classification analysis of SVM. Verification through classification analysis can improve the effectiveness and reliability of various recognition fields such as object recognition as well as face recognition, and will be of great help in improving recognition rates.
It is a right time to improve the Korea Foreign Trade Act(KFTA) as a fundamental law on Rules of Origin(RoO) in the global trade circumstances which are summarized FTA and WTO. The KFTA's RoO constitutes the labelling system of the Country of Origin, the criterion of it, the issuing of certificate of origin and the punishing offender mainly around the importing goods. This study has focused on the problems of KFTA's RoO at the macro and practical level, and proposed the programs to improve the KFTA's RoO about importing, exporting and domestic production goods. KFTA need to create a purpose clause to protect consumers and industries also, and has to be located a general and top position in the RoO of Korea. In the concrete, the labelling system of the Country of Origin has to set limited in the point of minimum necessity view. The criterion of the Country of Origin also has to improve the wholly obtained criterion, the changing in tariff classification criterion, value added criterion and processing operation criterion to harmonize WTO Rules of Origin and FTA Rules of Origin. The punishment ceiling against offender has to raise to guarantee the effectiveness of RoO.
홍지호·여영서는 "'부당한 연역 논증'은 형용모순인가?"라는 논문에서 연역 논증과 귀납 논증을 구분하는 기준으로 실현 기준이 아닌 의도 기준을 지지한다. 이 논문은 그들의 주장을 비판하는 것이 목표이다. 나는 그들의 주장이 논증 재구성과 논증 분류[평가]를 헷갈리고 있으며, 의도 기준의 난점을 해명하면서 실현 기준을 들여오고 있다고 주장한다. 그들을 비롯한 대부분의 논리학자들은 논증을 연역, 귀납, 그리고 나쁜 논증으로 나눈다. 나는 연역과 귀납으로 나누어야 한다고 주장한다. 마지막으로 논리 교육에서는 연역과 귀납의 구분을 굳이 가르칠 필요가 없다고 주장한다.
In the text classification domain, labeling the training documents is an expensive process because it requires human expertise and is a tedious, time-consuming task. Therefore, it is important to reduce the manual labeling of training documents while improving the text classifier. Selective sampling, a form of active learning, reduces the number of training documents that needs to be labeled by examining the unlabeled documents and selecting the most informative ones for manual labeling. We apply this methodology to Naive Bayes, a text classifier renowned as a successful method in text classification. One of the most important issues in selective sampling is to determine the criterion when selecting the training documents from the large pool of unlabeled documents. In this paper, we propose two measures that would determine this criterion : the Mean Absolute Deviation (MAD) and the entropy measure. The experimental results, using Renters 21578 corpus, show that this proposed learning method improves Naive Bayes text classifier more than the existing ones.
To make an accurate retrieval of the proportion of each category among mixed pixels (Mixel's) of a remotely sensed imagery, a maximum likelihood estimation method of category proportion is proposed. In this method, the observed multispectral vector is considered as probability variables along with the approximation that the supervised data of each category can be characterized by normal distribution. The results show that this method can retrieve accurate proportion of each category among Mixel's. And a index that can estimate the degree of error in each category is proposed. AS one of the application of the proportion estimation, a method for image classification based on category proportion estimation is proposed. In this method all pixel in a remotely sensed imagery are assumed to be Mixel's, and are classified to most dominant category. Among the Mixel's, there exists unconfidential pixels which should be categorized as unclassified pixels. In order to discriminate them, two types of criteria, Chi square and AIC, are proposed for fitness test on pure pixel hypothesis. Experimental result with a simulated dataset show an usefulness of proposed classification criterion compared to the conventional maximum likelihood criterion and applicability of the fitness tests based on Chi square and AIC,
Purpose: The purpose of this study was to apply alternative standard setting methods for the Korean Medical Licensing Examination (KMLE), a criterion-referenced written examination, and to compare them to the conventional cut score used on the KMLE. Methods: The process and results of criterion-referenced standard settings (i.e., the modified-Angoff and bookmark methods) were evaluated. The ratio of passing and failing examinees determined using these alternative standard setting methods was compared to the results of the conventional criteria. Additionally, the external, internal and procedural evaluation of these methods were reviewed. Results: The modified-Angoff method yielded the highest cut score, followed sequentially by the conventional method and the bookmark method. The classification agreement between the modified-Angoff and bookmark methods was 0.720 measured by Cohen's ${\kappa}$ coefficient. The intra-panelist classification consistency of modified-Angoff method was higher than bookmark method. However, the inter-panelist classification consistency was vice versa. The standard setting panelists' survey results showed that the procedures of both methods were satisfactory, but panelists had more confidence in the results of the modified-Angoff method. Conclusion: The modified-Angoff method showed results that were more similar to those of the conventional method. Both new methods showed very high concordance with the conventional method, as well as with each other. The modified-Angoff method was considered feasible for adoption on the KMLE. The standard setting panelists responded positively to the modified-Angoff method in terms of its practical applicability, despite certain advantages of the bookmark method.
Purpose: This study was conducted to test criterion-related validity of the Critical Patients' Severity Classification System (CPSCS) developed by the Hospital Nurses' Association by examining relationships with brain injury severity measured by Glasgow Coma Scale (GCS), recovery state measured by Glasgow Outcome Scale (GOS), and days of stay in ICU of brain injury patients. Methods: Prospective correlational research design was adopted by including 194 brain injury patients admitted to ICU of one university hospital. Results: The score of CPSCS appeared to significantly discriminate the severity of brain injury. Among nursing activities in CPSCS, Respiratory therapy, IV Infusion and Medication, Monitoring, Activities of Daily Living (ADL), Treatment and Procedure were significant to discriminate the severity of brain injury. Respiratory therapy, Vital Signs, and Monitoring appeared to significantly discriminate the recovery states of 1- and 3-months. Nursing activities significantly contributed to predict the days of ICU stay were Respiratory therapy, ADL, and Teaching and Emotional Support. Conclusion: CPSCS developed by the Hospital Nurses Association appeared to be valid to discriminate or predict brain injury severity, recovery states, and days of stay in ICU for brain injury patients.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.