• Title/Summary/Keyword: crevice

Search Result 139, Processing Time 0.022 seconds

Cause of Corrosion and Evaluation of Material Corrosion Resistance on Underground Heat Transport Facilities Connected to Manhole (맨홀과 연결된 지하 열수송설비의 부식 원인 및 재질 내식성 평가)

  • Song, M.J.;Choi, G.;Kim, W.C.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.4
    • /
    • pp.193-202
    • /
    • 2022
  • Manholes and underground spaces are installed to manage the buried heat transport pipes of the district heating system, and the corrosion damage of the equipment placed in this space often occurs. The purpose of this work is to identify locations with a high risk of corrosion damage in the air vent and to establish preventive measures based on precise analysis via sampling of heat transport pipes and air vents that have been used for about 30 years. The residual thickness of the air vent decreased significantly by reaching ~1.1 mm in thickness, and locations of 60~70 mm away from a transport pipe were the most vulnerable to corrosion. The energy dispersive X-ray spectroscopy (EDS) analysis was performed in the corroded oxides, and it was found that chloride ion was contained in the corrosion products. Anodic polarization tests were carried out on the air vent materials (SPPS250, SS304) with varying the amounts of chloride ions at two different temperatures (RT, 80℃). The higher concentration of chloride ions and temperature are, the lower corrosion resistances of both alloys are.

Effects of pH and Chloride Concentration on Corrosion Behavior of Duplex Stainless Steel and Titanium Alloys Ti 6Al 2Nb 1Ta 1Mo at Elevated Temperature for Pump Impeller Applications

  • Aymen A., Ahmed;Ammar Yaseen, Burjes;Ammar Yaseen, Burjes
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.454-465
    • /
    • 2022
  • The objective of this study was to determine effects of temperatures and pH of sodium chloride solution with MgCl2 ions on corrosion resistance of duplex stainless-steel X2CrNiMoN22-5-3 (DSS) and Ti 6Al 2Nb1Ta1Mo (Ti). Effects of sodium chloride concentration on corrosion resistance were also studied. Corrosion behavior and pitting morphology of duplex stainless steel (DSS) and Ti alloys were evaluated through potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). It was found that a decrease in pH significantly reduced the corrosion resistance of both alloys. Changes in chloride concentration and temperature had more substantial impact on corrosion behavior of DSS than on Ti alloys. Pitting corrosion was formed on DSS samples under all conditions, whereas crevice corrosion was developed on Ti samples with the presence of magnesium chloride at 90 ℃. In conclusion, magnesium chloride ions in an exceedingly strong acidity solution appear to interact with re-passivation process at the surface of these alloys and influence the resulting surface topography.

Radiochemical behavior of nitrogen species in high temperature water

  • Young-Jin Kim;Geun Dong Song;Seung Heon Baek;Beom Kyu Kim;Jin Sik Cheon;Jun Hwan Kim;Hee-Sang Shim;Soon-Hyeok Jeon;Hyunmyung Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3183-3193
    • /
    • 2023
  • The water radiolysis in-core at light water reactors (LWRs) produces various radicals with other ionic species/molecules and radioactive nitrogen species in the reactor coolant. Nitrogen species can exist in many different chemical forms and recirculate in water and steam, and consequently contribute to what extent the environmental safety at nuclear power plants. Therefore, a clear understanding of formation kinetics and chemical behaviors of nitrogen species under irradiation is crucial for better insight into the characteristics of major radioactive species released to the main steam or relevant coolant systems and eventually development of advanced processes/methodologies to enhance the environmental safety at nuclear power plants. This paper thus focuses on basic principles on electrochemical interaction kinetics of radiolytic molecules and various nitrogen species in high temperature water, fundamental approaches for calculating thermodynamic values to predict their stability and domain in LWRs, and the effect of nitrogen species on crevice chemistry/corrosion and intergranular stress corrosion cracking (IGSCC) susceptibility of structure materials in high temperature water.

Corrosion behaviors of 18Cr Stainless Steels in Selective Catalytic Reduction Environments (Selective Catalytic Reduction (SCR) 환경에서 18% 크롬 스테인리스강의 부식 거동)

  • Heesan Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.175-186
    • /
    • 2023
  • Effects of high-temperature environment and low-temperature environment on corrosion behaviours of 18Cr stainless steels (type 304L, type 441) in simulated selective catalytic reduction (SCR) environments were studied using weight loss test in each environment and rust analysis. With time to exposure to the high-temperature environment, type 441 was more resistant to corrosion than type 304L due to both higher diffusivity of Cr and lower thermal expansion coefficient in α-iron. The former provides a stable protective Cr2O3 layer. The latter leaded to low residual stress between scale and steel, reducing the spallation of the scale. With time to exposure to the low-temperature environment, on the other hand, type 304L was more resistant to corrosion than type 441. The lower resistance of type 441 was caused by Cr-depleted zone with less than 11% formed during the pre-exposure to a high-temperature environment, unlike type 304L. It was confirmed by results from the crevice corrosion test of sensitised 11Cr steel. Hence, to achieve higher corrosion resistance in simulated SCR environments, ferritic stainless steels having lower thermal expansion coefficient and higher diffusivity of Cr but containing more than 18% Cr are recommended.

Investigation of Autoignition of Propane and n-Butane Blends Using a Rapid Compression Machine

  • Kim, Hyunguk;Yongseob Lim;Kyoungdoug Min;Lee, Daeyup
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1127-1134
    • /
    • 2002
  • The effects of pressure and temperature on the autoignition of propane and n-butane blends were investigated using a rapid compression machine (RCM) , which is widely used to examine the autoignition characteristics. The RCM was designed to be capable of varying the compression ratio between 5 and 20 and minimize the vortex formation on the cylinder wall using a wedge-shaped crevice. The initial temperature and pressure of the compressed gas were varied in range of 720∼900 K and 1.6∼ 1.8 MPa, respectively, by adjusting the ratio of the specific heat of the mixture by altering the ratio of the non-reactive components (N$_2$, Ar) under a constant effective equivalence ratio (ø$\_$f/= 1.0) The gas temperature after the compression stroke could be obtained from the measured time-pressure record. The results showed a two-stage ignition delay and a Negative Temperature Coefficient (NTC) behavior which were the unique characteristic of the alkane series fuels. As the propane concentration in the blend were increased from 20% and 40% propane, the autoignition delay time increased by approximately 41 % and 55% at 750 K. Numerical reduced kinetic modeling was performed using the Shell model, which introduced some important chemical ideas, represented by the generic species. Several rate coefficients were calibrated based on the experimental results to establish an autoignition model of the propane and n-butane blends. These coefficients can be used to predict the autoignition characteristics in LPG fueled Sl engines.

Effects of the Solid Solution Heat Treatment on the Corrosion Resistance Property of SSC13 Cast Alloy (SSC13 주강품의 내부식특성에 미치는 고용화 열처리 영향)

  • Kim, Kuk-Jin;Lim, Su-Gun;Pak, S.J.
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.93-98
    • /
    • 2015
  • Recently, Stainless steels have been increasingly selected as the fitting or the valve materials of water pipes as the human health issue is getting higher and higher. Therefore, the connectors attached at pipes to deliver water are exposed to more severe environments than the pipes because crevice or galvanic corrosion is apt to occur at the fittings or the valves. Effects of the solid solution annealing, cooling rate after this heat treatment, and passivation on the corrosion properties of the shell mold casted SSC13 (STS304 alloy equivalent) were studied. The heating and quenching treatment more or less reduced hardness but effectively improved corrosion resistance. It was explained by the reduction of delta ferrite contents. Independent of heat treatment, the chemical passivation treatment also lowered corrosion rate but the improvement of corrosion resistance depended on temperature and time for passivation treatment indicating that the optimum conditions for passivation treatment were the bath temperature of $34^{\circ}C$ and operating time of 10 minutes. Therefore it is suggested that the corrosion resistance of SSC13 can be effectively improved with the heat treatment, where SSC13 is heated for 10 minutes at $1120^{\circ}C$ and quenched and passivation treatment, where SSC13 is passivated for at least 10 seconds at $34^{\circ}C$ nitric acid solution.

A Study on the Galvanic Corrosion for Zirconium with Titanium and 316L Stainless Steel

  • Baik, Shin-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.3
    • /
    • pp.285-289
    • /
    • 2013
  • The coastal area of Republic of Korea is very clean compared to other countries. In this reason, west coastal area of our country is a good place for breeding up a fish such as shrimp. In winter season, the heating system is required for preventing shrimp death caused by freezing in the farm. The heater in the heating system for fishery's farm is operated very severe combating corrosion due to high accumulation by feeding material and high temperature in heated sea water. Almost all manufactured heaters of STS 316L and Ti material are scrapped every year due to heavy corrosion such a general and crevice corrosion. For comparing the general and galvanic corrosion in new heater material, the test material of Zirconium (Zr), Titanium (Ti) and STS 316L are tested by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), current density-time methods and microscopic examination in a 3.5% NaCl solution. The corrosion potential (Ecor) measured by potentiodynamic polarization for Zr, Ti and STS 316L reveals -198, -250 and -450mV, corrosion current density 0.5, 2.5 and $6.5{\mu}A/cm^2$ respectively. The film resistance measured by EIS are Zr 63,000, Ti 39,700 and 316L $3,150{\Omega}$, and the current of Zr-Ti couple is $0.03{\mu}A$, whereas Zr-316L SS is $0.1{\mu}A$. According to the result of this experiment in 3.5% NaCl solution, Zr is excellent corrosion resistance material than Ti and STS 316L.

Mechanical Deterioration of Overhead Transmission Lines by Forest Fires (산불에 의한 가공 송전선로의 기계적 열화 특성)

  • 김영달;김성덕;심재명;정동화;강지원
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.6
    • /
    • pp.26-34
    • /
    • 2000
  • The considerations for remaining life of ACSR (Aluminum Stranded Conductors Steel Reinforced) in transmission lines have become gradually important to hold reliability and stability of power supply. The remaining life of ACSR exposed to the atmosphere for a long period may rely on deterioration caused by environmental indices such as atmospheric corrosion, galvanic corrosion, crevice corrosion and fatigue corrosion. One of reduction of useful life in overhead transmission lines built on the ridge of mountain is often caused by forest fires.This paper deals with investigation of strength deterioration performance of ASCR due to fires through several testing and analyzing data for tension load and extension of blazed ACSR. Test samples are ACSR 480[$\textrm{mm}^2$] conductors, which are artificially fired to regular durations. Mechanical properties such as tension load and extension for fired ACSR conductors are tested and estimation functions for mechanical performances corresponding to fire duration are determined. As a result, it can be verified that both tension load and extension of ACSR are reduced by increasing fire duration. Hence, it is obvious that ACSR due to forest fires may lead to mechanical deterioration.

  • PDF

Corrosion and Surface Resistance of Ni-C Composite by Electrodeposition (전해도금에 의한 Ni-C 복합층의 내식성 및 표면 전기저항)

  • Park, Je-Sik;Lee, Sung-Hyung;Jeong, Goo-Jin;Lee, Churl-Kyoung
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.288-294
    • /
    • 2011
  • Simultaneous Ni and C codeposition by electrolysis was investigated with the aim of obtaining better corrosion resistivity and surface conductivity of a metallic bipolar plate for application in fuel cells and redox flow batteries. The carbon content in the Ni-C composite plate fell in a range of 9.2~26.2 at.% as the amount of carbon in the Ni Watt bath and the roughness of the composite were increased. The Ni-C composite with more than 21.6 at.% C content did not show uniformly dispersed carbon. It also displayed micro-sized defects such as cracks and crevices, which result in pitting or crevice corrosion. The corrosion resistance of the Ni-C composite in sulfuric acid is similar with that of pure Ni. Electrochemical test results such as passivation were not satisfactory; however, the Ni-C composite still displayed less than $10^{-4}$ $A/cm^2$ passivation current density. Passivation by an anodizing technique could yield better corrosion resistance in the Ni-C composite, approaching that of pure Ni plating. Surface resistivity of pure Ni after passivation was increased by about 8% compared to pure Ni. On the other hand, the surface resistivity of the Ni-C composite with 13 at.% C content was increased by only 1%. It can be confirmed that the metal plate electrodeposited Ni-C composite can be applied as a bipolar plate for fuel cells and redox flow batteries.

A study on the analysis of energy performance for zero-energy building of rural village hall - Focused on the Jung Juk 4-le village hall - (농촌 마을회관 제로에너지 건축물 구축을 위한 에너지 성능 분석 연구 - 충남 태안군 정죽4리 마을회관을 중심으로 -)

  • Park, Mi-Lan;Choi, Jeong-Man;Lee, Jeong-Hun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, we survey the 2 buildings at the Central 1 and 8 buildings at the Central 2, which are divided by each climate region in the rural regions. Major heat loss factors are 47% loss of the outer shell including outer wall, roof, and bottom, 30% loss through window, and 23% loss through crevice wind. We analyze the energy simulation of ECO2 program to construct a zero energy building regarding village hall located in Jung Juk 4-le at Centeral 2. We simulate the primary energy requirement regarding village hall and the simulated results show the $265.3kWh/m^2{\cdot}a$ and it may estimate '2' energy efficiency grade. The energy requirement regarding village hall is the $183.2kWh/m^2{\cdot}a$ when the passive technology are applied in village hall. We research total amount of energy requirement in village hall when the passive and active technologies such as solar cell with 3kW and solar thermal with $20m^2$, geothermal power with 17.5kW. The simulated results show the improved energy efficiency certification grade with $1^{{+}{+}{+}}$ due to the reduced primary energy requirement with 73% when passive technology including 3kW of solar panel is applied and the energy independence rate is 54%, which is estimated to be 4th grade of zero energy buildings. The order of energy consumption are solar panel, solar thermal, and geothermal power under applied passive technology in the building. In order to expand the zero energy building, it is necessary to introduce the zero energy evaluation system in the rural region.