• Title/Summary/Keyword: cresyl violet staining

Search Result 25, Processing Time 0.037 seconds

Spatiotemporal expression of RCAN1 and its isoform RCAN1-4 in the mouse hippocampus after pilocarpine-induced status epilepticus

  • Cho, Kyung-Ok;Jeong, Kyoung Hoon;Cha, Jung-Ho;Kim, Seong Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.81-88
    • /
    • 2020
  • Regulator of calcineurin 1 (RCAN1) can be induced by an intracellular calcium increase and oxidative stress, which are characteristic features of temporal lobe epilepsy. Thus, we investigated the spatiotemporal expression and cellular localization of RCAN1 protein and mRNA in the mouse hippocampus after pilocarpine-induced status epilepticus (SE). Male C57BL/6 mice were given pilocarpine hydrochloride (280 mg/kg, i.p.) and allowed to develop 2 h of SE. Then the animals were given diazepam (10 mg/kg, i.p.) to stop the seizures and sacrificed at 1, 3, 7, 14, or 28 day after SE. Cresyl violet staining showed that pilocarpine-induced SE resulted in cell death in the CA1 and CA3 subfields of the hippocampus from 3 day after SE. RCAN1 immunoreactivity showed that RCAN1 was mainly expressed in neurons in the shammanipulated hippocampi. At 1 day after SE, RCAN1 expression became detected in hippocampal neuropils. However, RCAN1 signals were markedly enhanced in cells with stellate morphology at 3 and 7 day after SE, which were confirmed to be reactive astrocytes, but not microglia by double immunofluorescence. In addition, realtime reverse transcriptase-polymerase chain reaction showed a significant upregulation of RCAN1 isoform 4 (RCAN1-4) mRNA in the SE-induced hippocampi. Finally, in situ hybridization with immunohistochemistry revealed astrocytic expression of RCAN1-4 after SE. These results demonstrate astrocytic upregulation of RCAN1 and RCAN1-4 in the mouse hippocampus in the acute and subacute phases of epileptogenesis, providing foundational information for the potential role of RCAN1 in reactive astrocytes during epileptogenesis.

Increase of Synapsin I, Phosphosynapsin (ser-9), and GAP-43 in the Rat Hippocampus after Middle Cerebral Artery Occlusion

  • Jung, Yeon-Joo;Huh, Pil-Woo;Park, Su-Jin;Park, Jung-Sun;Lee, Kyung-Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.77-81
    • /
    • 2004
  • The loss of neurons and synaptic contacts following cerebral ischemia may lead to a synaptic plastic modification, which may contribute to the functional recovery after a brain lesion. Using synapsin I and GAP-43 as markers, we investigated the neuronal cell death and the synaptic plastic modification in the rat hippocampus of a middle cerebral artery occlusion (MCAO) model. Cresyl violet staining revealed that neuronal cell damage occurred after 2 h of MCAO, which progressed during reperfusion for 2 weeks. The immunoreactivity of synapsin I and GAP-43 was increased in the stratum lucidum in the CA3 subfield as well as in the inner and outer molecular layers of dentate gyrus in the hippocampus at reperfusion for 2 weeks. The immunoreactivity of phosphosynapsin was increased in the stratum lucidum in the CA3 subfield during reperfusion for 1 week. Our data suggest that the increase in the synapsin I and GAP-43 immunoreactivity probably mediates either the functional adaptation of the neurons through reactive synaptogenesis from the pre-existing presynaptic nerve terminals or the structural remodeling of their axonal connections in the areas with ischemic loss of target cells. Furthermore, phosphosynapsin may play some role in the synaptic plastic adaptations before or during reactive synaptogenesis after the MCAO.

The Effect of Gongjin-dan on Gliosis in Middle Cerebral Artery Occlusion (MCAO) Rats (공진단이 MCAO모델 흰쥐에서 gliosis 억제에 마치는 영향)

  • Seong, Kee-Moon;Hae, Rae-Kyong;Song, Bong-Keun
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.674-684
    • /
    • 2009
  • Objectives : In conditions of brain infarction, irreversible axon damage occurs in the central nerve system (CNS), because gliosis becomes a physical and a mechanical barrier to axonal regeneration. Reactive gliosis induced by ischemic injury such as middle cerebral artery occlusion is involved with up-regulation of GFAP and CD81. This study was undertaken to examine the effect of the Gongjin-dan (GJD) on CD81 and GFAP expression and its pathway in the rat brain following middle cerebral artery occlusion (MCAO). Methods : In order to study ischemic injuries on the brain, infarction was induced by MCAO using insertion of a single nylon thread, through the internal carotid artery, into a middle cerebral artery. Cresyl violet staining, cerebral infarction size measurement, immunohistochemistry and microscopic examination were used to detect the expression of CD81 and GFAP and the effect on the infarct size and pyramidal cell death in the brain of the rat with cerebral infarction induced by MCAO. Also, c-Fos and ERK expression were measured to investigate the signaling pathway after GJD administration in MCAO rats. Results : Measuring the size of cerebral infarction induced by MCAO in the rat after injection of GJD showed the size had decreased. GJD administration showed pyramidal cell death protection in the hippocampus in the MCAO rat. GJD administration decreased GF AP expression in the MCAO rat. GJD administration decreased CD81 expression in the MCAO rat. GJD administration induced up-regulation of c-FOS expression compared with MCAO. GJD administration induced down-regulation of ERK expression compared with MCAO. Conclusion : We observed that GJD could suppress the reactive gliosis, which disturbs the axonal regeneration in the brain of a rat with cerebral infarction after MCAO by controlling the expression of CD81 and GFAP. The effect may be modulated by the regulation of c-Fos and ERK. These results suggest that GJD can be a candidate to regenerate CNS injury.

  • PDF

Loss of hsp70.1 Decreases Functional Motor Recovery after Spinal Cord Injury in Mice

  • Kim, Hyun-Jeong;Jung, Ji-In;Kim, Young-Kyung;Lee, Jae-Seon;Yoon, Young-Wook;Kim, June-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.157-161
    • /
    • 2010
  • Heat shock proteins (HSPs) are specifically induced by various forms of stress. Hsp70.1, a member of the hsp70 family is known to play an important role in cytoprotection from stressful insults. However, the functional role of Hsp70 in motor function after spinal cord injury (SCI) is still unclear. To study the role of hsp70.1 in motor recovery following SCI, we assessed locomotor function in hsp70.1 knockout (KO) mice and their wild-type (WT) mice via the Basso, Beattie and Bresnahan (BBB) locomotor rating scale, before and after spinal hemisection at T13 level. We also examined lesion size in the spinal cord using Luxol fast blue/cresyl violet staining. One day after injury, KO and WT mice showed no significant difference in the motor function due to complete paralysis following spinal hemisection. However, when it compared to WT mice, KO mice had significantly delayed and decreased functional outcomes from 4 days up to 21 days after SCI. KO mice also showed significantly greater lesion size in the spinal cord than WT mice showed at 21 days after spinal hemisection. These results suggest that Hsp70 has a protective effect against traumatic SCI and the manipulation of the hsp70.1 gene may help improve the recovery of motor function, thereby enhancing neuroprotection after SCI.

Neuroprotective effect of lithium after pilocarpine-induced status epilepticus in mice

  • Hong, Namgue;Choi, Yun-Sik;Kim, Seong Yun;Kim, Hee Jung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.125-131
    • /
    • 2017
  • Status epilepticus is the most common serious neurological condition triggered by abnormal electrical activity, leading to severe and widespread cell loss in the brain. Lithium has been one of the main drugs used for the treatment of bipolar disorder for decades, and its anticonvulsant and neuroprotective properties have been described in several neurological disease models. However, the therapeutic mechanisms underlying lithium's actions remain poorly understood. The muscarinic receptor agonist pilocarpine is used to induce status epilepticus, which is followed by hippocampal damage. The present study was designed to investigate the effects of lithium post-treatment on seizure susceptibility and hippocampal neuropathological changes following pilocarpine-induced status epilepticus. Status epilepticus was induced by administration of pilocarpine hydrochloride (320 mg/kg, i.p.) in C57BL/6 mice at 8 weeks of age. Lithium (80 mg/kg, i.p.) was administered 15 minutes after the pilocarpine injection. After the lithium injection, status epilepticus onset time and mortality were recorded. Lithium significantly delayed the onset time of status epilepticus and reduced mortality compared to the vehicle-treated group. Moreover, lithium effectively blocked pilocarpine-induced neuronal death in the hippocampus as estimated by cresyl violet and Fluoro-Jade B staining. However, lithium did not reduce glial activation following pilocarpine-induced status epilepticus. These results suggest that lithium has a neuroprotective effect and would be useful in the treatment of neurological disorders, in particular status epilepticus.

Neuroprotective Effect of Visnagin on Kainic Acid-induced Neuronal Cell Death in the Mice Hippocampus

  • Kwon, Min-Soo;Lee, Jin-Koo;Park, Soo-Hyun;Sim, Yun-Beom;Jung, Jun-Sub;Won, Moo-Ho;Kim, Seon-Mi;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.257-263
    • /
    • 2010
  • Visnagin (4-methoxy-7-methyl-5H-furo[3,2-g][1]-benzopyran-5-one), which is an active principle extracted from the fruits of Ammi visnaga, has been used as a treatment for low blood-pressure and blocked blood vessel contraction by inhibition of calcium influx into blood cells. However, the neuroprotective effect of visnagin was not clearly known until now. Thus, we investigated whether visnagin has a neuroprotective effect against kainic acid (KA)-induced neuronal cell death. In the cresyl violet staining, pre-treatment or post-treatment visnagin (100 mg/kg, p.o. or i.p.) showed a neuroprotective effect on KA ($0.1{\mu}g$) toxicity. KA-induced gliosis and proinflammatory marker (IL-$1{\beta}$, TNF-${\alpha}$, IL-6, and COX-2) inductions were also suppressed by visnagin administration. These results suggest that visnagin has a neuroprotective effect in terms of suppressing KA-induced pathogenesis in the brain, and that these neuroprotective effects are associated with its anti-inflammatory effects.

Post-ischemic Time-dependent Activity Changes of Hippocampal CA1 cells of the Mongolian Gerbils

  • Won, Moo-Ho;Shin, Hyung-Cheul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.6
    • /
    • pp.247-251
    • /
    • 2007
  • Changes of single unit activity of CA1 hippocampus region were investigated in anesthetized Mongolian gerbils for six days following transient ischemia. Ischemia was produced immediately before the implantation of micro-wire recording electrodes. In control animals receiving pseudo-ischemic surgery, neither spontaneous neuronal activities ($5.70{\pm}0.4Hz$) nor the number of recorded neurons per animal changed significantly for six days. Correlative firings among simultaneously recorded neurons were weak (correlation coefficient > 0.6) in the control animals. Animals subjected to ischemia exhibited a significant elevation of neural firing at post-ischemic 12 hr ($9.95{\pm}0.9Hz$) and day 1 ($8.48{\pm}0.8Hz$), but a significant depression of activity at post-ischemic day 6 ($1.84{\pm}0.3Hz$) when compared to the activities of non-ischemic control animal. Ischemia significantly (correlation coefficient > 0.6) increased correlative firings among simultaneously recorded neurons, which were prominent especially during post-ischemic days 1, 2 and 6. Although the numbers of spontaneously active neurons recorded from control group varied within normal range during the experimental period, those from ischemic group changed in post-ischemic time-dependent manner. Temporal changes of the number of cells recorded per animal between control group and ischemic group were also significantly different (p = 0.0084, t = 3.271, df = 10). Cresyl violet staining indicated significant loss of CA1 cells at post-ischemic day 7. Overall, we showed post-ischemic time-dependent, differential changes of three characteristics, including spontaneous activity, network relationship and excitability of CA1 cells, suggesting sustained neural functions. Thus, histological observation of CA1 cell death till post-ischemic day 7 may not represent actual neuronal death.

The study for the mouse cerebellum developments irradiated with γ-ray during embryogenesis (감마선 조사에 의한 발생과정 중인 마우스의 소뇌발달에 관한 연구)

  • Park, Il-Kwon;Lee, Kyoung-Youl;Park, O-Sung;Kim, Sung-Hwa;Lee, Guen-Jwa;Lee, Kang-Yi;Min, Tae-Sun;Yook, Hong-Sun;Byun, Myung-Woo;Kim, Moo-Kang
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.2
    • /
    • pp.139-149
    • /
    • 2005
  • In order to study about the lobule and layer formation and cell migration of the mouse cerebellum from at the birth to 15th day effected by 2.5, 5 and 10 Gy r-raddiation at the 19th pregnancy. The routine tissue preparation and staining procedure, Immunohistochemical staining method by the several antibody and western brotting method were utilized from the birth to the15th day. The results were as followings. 1. The body and cerebellum weights were more slowly increase of the the 2.5 Gy, 5 Gy and 10 Gy irradiation group compare to the control group, and the health condition of the 2.5 Gy group was a little bad. but the 10 Gy group was more severe and begun to die from the 12th day after birth. 2. The thickness, proliferation and migration of the 2.5, 5 and 10 Gy irradiated external granular cells from the maginal zone to the medullary area forming the molecular layer from the 6th day to the 15th day after birth were thinner, weaker and more slower according to the radiated dosages than the control group in the cresyl violet staining. 3. The proliteration, migration and lobulation of the 5 Gy radiated groups from the first day to the 15th day after birth were more weak, incomplete and irregular shape in the immunostaining with Dab, Cdk5, P35, calbindin and Zebrin antibody. 4. In the western blotting analysis using the Reelin, Dab, Cdk5 and P35 antibody. The Bands were in the 60 KD, 80 KD, 33 KD and 35 KD, and there were no differences between the control and irradiated groups in the molecular band except the Reelin. 5. As a results, the proliferation and migration of the outer granular and purkinje cells, and lobulation of the cerebellum by the several dosaege of the ${\gamma}$-ray radiation were proportionally incomplete according to dosage.

Acupuncture Treatment at HT8 Protects Hippocampal Cells in Dentate Gyrus on Kainic Acid-Induced Epilepsy Mice Model (소부혈(少府穴) 자침(刺鍼)이 Kainic Acid로 유도(誘導)된 간질(癎疾) 동물(動物) 모델의 해마(海馬) 치상회(齒狀回)에 미치는 영향(影響))

  • Kim, Seung-Tae;Chung, Joo-Ho;Jeong, Wu-Byung;Kim, Jang-Hyun;Kang, Min-Jung;Hong, Mee-Sook;Park, Hae-Jeong;Kim, Yeon-Jung;Park, Hi-Joon;Lee, Hye-Jeong
    • Korean Journal of Acupuncture
    • /
    • v.24 no.4
    • /
    • pp.99-110
    • /
    • 2007
  • Objectives : Epilepsy is one of the most common serious brain disorders that affect people of all ages, and it is characterized by recurrent unprovoked seizures. We examined whether acupuncture can reduce both the incidence of seizures and hippocampal cell death in dentate gyrus (DG) using a mouse model of kainic acid (KA)-induced epilepsy. Methods : ICR mice ($20{\sim}25$ g) were given acupuncture once a day at acupoint HT8 (sobu) bilaterally during 2 days before KA injection. After an intracerebroventricular injection of 0.1${\mu}g$ of KA, acupuncture treatment was subsequently administered once more (total 3 times), and the degree of seizure was observed for 20 min. Three hours after injection, we confirmed the neural cell death using cresyl violet staining and silver impregnation staining, and determined the expressions of c-Fos and glutamate decarboxylase (GAD)-67 using immunohistochemistry techniques in the DG. Results : KA induced epileptic seizure, neural cell death, increased c-Fos expression and decreased GAD-67 expression in the DG. Acupuncture treatment at HT8 reduced the severity of the epileptic seizure and inhibited neural cell death from KA. In addition, acupuncture normalized the expressions of c-Fos and GAD-67 in the same areas. Conclusions : These results demonstrated that acupuncture treatment at HT8 may reduce the KA-induced epileptic seizure and neural cell death in the DG possibly by normalizing c-Fos expressions and the gamma-aminobutyric acid neurons.

  • PDF

Effects of Hwangryunhaedok-tang(Huanglianjiedu-tang) on Locomotor Dysfunction of Contusive Spinal Cord Injury-induced Rats (황련해독탕(黃連解毒湯)이 척수 압박손상 흰쥐의 운동기능 장애에 미치는 영향)

  • Seong, Ju-Won;Kim, Ki-Yuk;Bahn, Hyo-Jung;Shin, Jung-Won;Kang, Hee;Kim, Seong-Joon;Sohn, Nak-Won
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.20 no.4
    • /
    • pp.1-15
    • /
    • 2010
  • Objectives : This study was performed to evaluate the effects of Hwangryunhaedok-tang(Huanglianjiedu-tang HHT) water extract on locomotor dysfunction induced by spinal cord injury(SCI) in rats. Methods : SCI was induced by mechanical contusion following laminectomy of 10th thoracic vertebra in Sprague-Dawley rats. HHT was orally given once a day for 14 days after SCI. Neurological behavior was examined with the Basso-Beattie-Bresnahan locomotor rating scale. Tissue damage and nerve fiber degeneration were examined with cresyl violet and luxol fast blue staining. Using immunohistochemisty, cellular damage to neurons and nerve fibers were examined against Bax and MAP-2. As inflammatory response markers, iNOS and COX-2 expressions were also examined. Results : 1. HHT ameliorated the locomotor dysfunction of the SCI-induced rats. 2. HHT attenuated the reduction of motor neurons in the ventral horn of the SCI-induced rat spinal cord. 3. HHT significantly reduced the number of Bax positive cells in the peri-lesion of the SCI-induced rat spinal cord. 4. HHT attenuated the reduction of MAP-2 positive cells in the peri-lesion of the SCI-induced rat spinal cord. 5. HHT significantly reduced the number of iNOS and COX-2 positive cells in the peri-lesion of the SCI-induced rat spinal cord. Conclusions : These results suggest that HHT improves the locomotor dysfunction of SCI by protecting motor neurons from cell death through anti-inflammatory effect.