Browse > Article

Effects of Hwangryunhaedok-tang(Huanglianjiedu-tang) on Locomotor Dysfunction of Contusive Spinal Cord Injury-induced Rats  

Seong, Ju-Won (Division of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung-Hee University)
Kim, Ki-Yuk (Division of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung-Hee University)
Bahn, Hyo-Jung (Division of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung-Hee University)
Shin, Jung-Won (Division of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung-Hee University)
Kang, Hee (Division of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung-Hee University)
Kim, Seong-Joon (Division of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung-Hee University)
Sohn, Nak-Won (Division of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung-Hee University)
Publication Information
Journal of Korean Medicine Rehabilitation / v.20, no.4, 2010 , pp. 1-15 More about this Journal
Abstract
Objectives : This study was performed to evaluate the effects of Hwangryunhaedok-tang(Huanglianjiedu-tang HHT) water extract on locomotor dysfunction induced by spinal cord injury(SCI) in rats. Methods : SCI was induced by mechanical contusion following laminectomy of 10th thoracic vertebra in Sprague-Dawley rats. HHT was orally given once a day for 14 days after SCI. Neurological behavior was examined with the Basso-Beattie-Bresnahan locomotor rating scale. Tissue damage and nerve fiber degeneration were examined with cresyl violet and luxol fast blue staining. Using immunohistochemisty, cellular damage to neurons and nerve fibers were examined against Bax and MAP-2. As inflammatory response markers, iNOS and COX-2 expressions were also examined. Results : 1. HHT ameliorated the locomotor dysfunction of the SCI-induced rats. 2. HHT attenuated the reduction of motor neurons in the ventral horn of the SCI-induced rat spinal cord. 3. HHT significantly reduced the number of Bax positive cells in the peri-lesion of the SCI-induced rat spinal cord. 4. HHT attenuated the reduction of MAP-2 positive cells in the peri-lesion of the SCI-induced rat spinal cord. 5. HHT significantly reduced the number of iNOS and COX-2 positive cells in the peri-lesion of the SCI-induced rat spinal cord. Conclusions : These results suggest that HHT improves the locomotor dysfunction of SCI by protecting motor neurons from cell death through anti-inflammatory effect.
Keywords
Hwangryunhaedok-tang(Huanglianjiedu-tang); Locomotor dysfunction; Spinal cord injury; Bax; MAP-2; iNOS; COX-2;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Sekhon LH, Fehlings MG. Epidemiology, demographics and pathophysiology of acute spinal cord injury. Spine. 2001;26:S2-12.   DOI   ScienceOn
2 Anderberg L, Aldskogius H, Holtz A. Spinal cord injury-scientific challenges for the unknown future. Ups J Med Sci. 2007;112:259-88.   DOI   ScienceOn
3 Tator CH, Koyanagi I. Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg. 1997;86:483-92.   DOI   ScienceOn
4 Popovich PG, Wei p, Stokes BT. Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol. 1997;377:443-64.   DOI   ScienceOn
5 Choi DW. Excitotoxic cell death. J Neurobiol. 1992;23:1261-76.   DOI
6 Sakamoto A, Ohnishi ST, Ohnishi T, Ogawa R. Relationship between free radical production and lipid peroxidation during ischemia-reperfusion injury in the rat brain. Brain Res. 1991;554:186-92.   DOI   ScienceOn
7 Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR. Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 2004;4:451-64.   DOI   ScienceOn
8 Springer JE, Azbill RD, Knapp PE. Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat Med. 1999;5:943-6.   DOI   ScienceOn
9 Skaper SD, Leon A. Monosialogangliosides, neuroprotection and neuronal repair processes. J Neurotrauma. 1992;9:S507-16.
10 葛洪. 肘後備急方. 상해:인민위생출판사. 1996:34-7.
11 許浚. 東醫寶鑑. 서울:남산당. 1966:396, 426.
12 Mizukawa H, Yoshida K, Honmura A, Uchiyama Y, Kaku H, Nakajima S, Haruki E. The effect of orengedokuto on experimentally-inflamed rats. Am J Chin Med. 1993;21:71-8.   DOI   ScienceOn
13 Zhou H, Mineshita S. The effect of orengedokudo on experimental colitis in rat. J Pharm Pharmacol. 1999;51:1065-74.   DOI
14 이민정, 김영옥, 이강진, 유영법, 김선여, 김성수, 김호철. 황련해독탕의 4-VO로 유발한 흰쥐 뇌허혈에 대한 신경보호효과. 대한한의학회지. 2002;23:161-8.   과학기술학회마을
15 Kim KS, Rhee HI, Park EK, Jung K, Jeon HJ, Kim JH, Yoo H, Han CK, Cho YB, Ryu CJ, Yang HI, Yoo MC. Anti-inflammatory effects of Radix Gentianae Macrophyllae (Qinjiao), Rhizoma Coptidis(Huanglian) and Citri Unshiu Pericarpium(Wenzhou migan) in animal models. Chin Med. 2008;3:10-6.   DOI   ScienceOn
16 Koo HJ, Lim KH, Jung HJ, Park EH. Anti-inflammatory evaluation of gardenia extract, geniposide and genipin. J Ethnopharmacol. 2006;103:496-500.   DOI   ScienceOn
17 Kim EH, Shim B, Kang S, Jeong G, Lee JS, Yu YB, Chun M. Anti-inflammatory effects of Scutellaria baicalensis extract via suppression of immune modulators and MAP kinase signaling molecules. J Ethnopharmacol. 2009;126:320-31.   DOI   ScienceOn
18 Park YK, Chung YS, Kim YS, Kwon OY, Joh TH. Inhibition of gene expression and production of iNOS and TNF-alpha in LPS-stimulated microglia by methanol extract of Phellodendri cortex. Int Immunopharmacol. 2007;7:955-62.   DOI   ScienceOn
19 An BJ, Lee JT, Lee CE, Kim JH, Son JH, Kwak JH, Lee JY, Park TS, Bae HJ, Jang MJ, Jo C. A study on physiological activities of Coptidis rhizoma and application for cosmetic ingredients. Kor J Herbology. 2005;20:83-91.   과학기술학회마을
20 이병철, 임강현, 김영옥, 김선려, 안덕균, 박호군, 김호철. 황금의 4-VO로 유발한 흰쥐 뇌허혈에 대한 신경방어효과. 대한본초학회. 1994;4:89-96.
21 김경훈, 정수현, 김재우, 엄형섭, 정승현, 신길조, 이원철, 문일수. 황금이 저산소증으로 유발된 대뇌신경세포의 세포사에 미치는 영향. 대한한방내과학회지. 2002;3:396-405.
22 심은영. 황련이 Lipopolysaccharide 뇌실 주입으로 유발된 생쥐의 IL-6와 TNF-a 변화에 미치는 영향. 대한한의학방제학회지. 2004;12:209-23.   과학기술학회마을
23 Young W. Spinal cord contusion models. Prog Brain Res. 2002;137:231-55.   DOI
24 Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12:1-21.   DOI   ScienceOn
25 Martinez M, Brezun JM, Bonnier L, Xerri C. A new rating scale for open-field evaluation of behavioral recovery after cervical spinal cord injury in rats. J Neurotrauma. 2009;26:1043-53.   DOI   ScienceOn
26 Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull. 1999;49:377-91.   DOI   ScienceOn
27 Tator CH. Biology of neurological recovery and functional restoration after spinal cord injury. Neurosurgery. 1998;42:696-707.   DOI   ScienceOn
28 Tator CH. Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol. 1995;5:407-13.   DOI
29 Kakulas BA. A review of the neuropathology of human spinal cord injury with emphasis on special features. J Spinal Cord Med. 1999;22:119-24.   DOI
30 홍남두, 김종우, 두호경, 김남재. 생약복합제의 약효연구(제 4보): 황련해독탕의 중추신경계 작용에 대하여. 생약학회지. 1982;13:20-5.
31 Hwang YS, Shin CY, Huh Y, Ryu JH. Hwangryun-Hae-Dok-tang(Huanglian-Jie-Du-Tang) extract and its constituents reduce ischemia-reperfusion brain injury and neutrophil infiltration in rats. Life Sci. 2002;71:2105-17.   DOI   ScienceOn
32 공민정, 하니나, 이하영, 김용태, 노승주, 김호철. 황련해독탕 및 가미방의 인지기능회복에 대한 연구. 대한본초학회지. 2004;19:161-8.   과학기술학회마을
33 문진영. 황련해독탕의 산화적 DNA 손상에대한 보호효과 및 항산화효소계의 발현과 Acetylcholinesterase 활성에 미치는 영향. 대한본초학회지. 2007;22:7-12.   과학기술학회마을
34 Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med. 1997;3:73-6.   DOI   ScienceOn
35 Emery E, Aldana P, Bunge MB, Puckett W, Srinivasan A, Keane RW, Bethea J, Levi AD. Apoptosis after traumatic human spinal cord injury. J Neurosurg. 1998;89:911-20.   DOI
36 Wada S, Yone K, Ishidou Y, Nagamine T, Nakahara S, Niiyama T, Sakou T. Apoptosis following spinal cord injury in rats and preventative effect of N-methyl-D-aspartate receptor antagonist. J Neurosurg Spine. 1999;91:98-104.   DOI
37 Griffiths IR, McCulloch MC. Nerve fibres in spinal cord impact injuries. Part 1. Changes in the myelin sheath during the initial 5 weeks. J Neurol Sci. 1983;58:335-49.   DOI   ScienceOn
38 Liu XZ, Xu XM, Hu R, Du C, Zhang SX, McDonald JW, Dong HX, Wu YJ, Fan GS, Jacquin MF, Hsu CY, Choi DW. Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci. 1997;17:5395-406.
39 Pellegrini M, Strasser A. A portrait of the Bcl-2 protein family: life, death and the whole picture. J Clin Immunol. 1999;19:365-77.   DOI   ScienceOn
40 White FA, Keller-Peck CR, Knudson CM, Korsmeyer SJ, Snider WD. Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J Neurosci. 1998;18:1428-39.
41 Profyris C, Cheema SS, Zang D, Azari MF, Boyle K, Petratos S. Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis. 2004;15:415-36.   DOI   ScienceOn
42 Kikuchi H, Doh-ura K, Kawashima T, Kira J, Iwaki T. Immunohistochemical analysis of spinal cord lesions in amyotrophic lateral sclerosis using microtubule-associated protein 2(MAP2) antibodies. Acta Neuropathol. 1999;97:13-21.   DOI   ScienceOn
43 Li GL, Farooque M, Lewen A, Lennmyr F, Holtz A, Olsson Y. MAP2 and neurogranin as markers for dendritic lesions in CNS injury. An immunohistochemical study in the rat. APMIS. 2000;108:98-106.   DOI   ScienceOn
44 Schnell L, Fearn S, Klassen H, Schwab ME, Perry VH. Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur J Neurosci. 1999;11:3648-58.   DOI   ScienceOn
45 Schnell L, Fearn S, Schwab ME, Perry VH, Anthony DC. Cytokine-induced acute inflammation in the brain and spinal cord. J Neuropathol Exp Neurol. 1999;58:245-54.   DOI   ScienceOn
46 Nakahara S, Yone K, Setoguchi T, Yamaura I, Arishima Y, Yoshino S, Komiya S. Changes in nitric oxide and expression of nitric oxide synthase in spinal cord after acute traumatic injury in rats. J Neurotrauma. 2002;19:1467-74.   DOI   ScienceOn
47 Campbell SJ, Wilcockson DC, Butchart AG, Perry VH, Anthony DC. Altered chemokine expression in the spinal cord and brain contributes to differential interleukin-1beta-induced neutrophil recruitment. J Neurochem. 2002;83:432-41.   DOI   ScienceOn
48 Yang L, Blumbergs PC, Jones NR, Manavis J, Sarvestani GT, Ghabriel MN. Early expression and cellular localization of proinflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in human traumatic spinal cord injury. Spine. 2004;29:966-71.   DOI   ScienceOn
49 Hamada Y, Ikata T, Katoh S, Tsuchiya K, Niwa M, Tsutsumishita Y, Fukuzawa K. Role of nitric oxide in compression injury of rat spinal cord. Free Radic Biol Med. 1996;20:1-9.   DOI   ScienceOn
50 Satake K, Matsuyama Y, Kamiya M, Kawakami H, Iwata H, Adachi K, Kiuchi K. Nitric oxide via macrophage iNOS induces apoptosis following traumatic spinal cord injury. Mol Brain Res. 2000;85:114-22.   DOI   ScienceOn
51 Suzuki T, Tatsuoka H, Chiba T, Sekikawa T, Nemoto T, Moriya H, Sakuraba S, Nakaya H. Beneficial effects of nitric oxide Synthase inhibition on the recovery of neurological function after spinal cord injury in rats. Naunyn Schmiedebergs Arch Pharmacol. 2001;363:94-100.   DOI   ScienceOn
52 Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38:97-120.   DOI   ScienceOn
53 Vanegas H, Schaible HG. Prostaglandins and cyclooxygenases in the spinal cord. Prog Neurobiol. 2001;64:327-63.   DOI   ScienceOn