• Title/Summary/Keyword: crest height

Search Result 158, Processing Time 0.024 seconds

Analysis of Flow Characteristics of the Improved-Pneumatic-Movable Weir through the Laboratory Experiments (실내실험을 통한 개량형 공압식 가동보의 월류흐름 특성 분석)

  • Lee, Kyung Su;Jang, Chang-Lae;Lee, Namjoo;Ahn, Sang Jin
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1007-1015
    • /
    • 2014
  • This study investigates the discharge coefficient of Improved-Pneumatic-Movable (IPM) weir through the weir, a kind of movable weirs, to estimate much more accurate rating curves using laboratory flume experiments. The discharge coefficient ($C_d$) is from 0.613 to 0.634 by the stand-up angle of the weir. The upstream Froude Number ($F_{r1}$), relative crest length(${\xi}$), Headwater Ratio ($H_1/W$), the Overflow depth ratio of weir crest ($y_c/y_1$) was changed by the upstream. And the downstream Froude number ($F_{r2}$), the Overflow depth ratio of weir crest and Downstream Water depth ($y_c/y_2$) was changed by the downstream. The ratio of Downstream and Up and Downstream water Depth (${\Delta}y/y_2$) was found to be changed by both of the up and downstream flow. They considered the major influence variables and derived the Discharge coefficient Formula at this study. The Discharge coefficient of the Improved-Pneumatic-Movable (IPM) weir was settled by the height of the Movable weir, that is to say, it was settled by the flow conditions of upstream approach flow head and physical data according to the standing angle.

Numerical Simulation of Wave Overtopping on a Porous Breakwater Using Boussinesq Equations (Boussinesq 방정식을 사용하여 투수방파제의 월파 수치해석)

  • Huynh, Thanh Thu;Lee, Changhoon;Ahn, Suk Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.326-334
    • /
    • 2017
  • We obtain height of waves overtopping on a porous breakwater using both the one-layer and two-layer Boussinesq equations. The one-layer Boussinesq equations of Lee et al. (2014) are used and the two-layer Boussinesq equations are derived following Cruz et al. (1997). For solitary waves overtopping on a porous breakwater, we find through numerical experiments that the height of waves overtopping on a low-crested breakwater (obtained by the Navier-Stokes equations) are smaller than the height of waves passing through a high-crest breakwater (obtained by the one-layer Boussinesq equations) and larger than the height of waves passing through a submerged breakwater (obtained by the two-layer Boussinesq equations). As the wave nonlinearity becomes smaller or the porous breakwater width becomes narrower, the heights of transmitting waves obtained by the one-layer and two-layer Boussinesq equations become closer to the height of overtopping waves obtained by the Navier-Stokes equations.

A FINITE ELEMENT STRESS ANALYSIS OF FIXED PARTIAL DENTURE SUPPORTED BY OSSEOINTEGRATED IMPLANT AND THE NATURAL TEETH WITH REDUCED ALVEOLAR BONE HEIGHT (감소된 치조골 고경을 갖는 치아와 골유착성 임프랜트에 의해 지지되는 고정성 국소의치의 유한요소법적 응력분석)

  • Choi Choong-Kug;Kay Kee-Sung;Cho Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.2
    • /
    • pp.296-326
    • /
    • 1994
  • The purpose of this study was to evaluate the mechanical effects when one implant fixture was connected to the natural teeth with reduced alveolar bone height. This study also examined the effects of increasing the number of abutment teeth and the effects of the intramobile connector and the titanium connector as they were inserted between the implant superstructure and the fixture. The distribution and concentration load was applied to the fixed partial denture(FPD) supported by implant and the natural teeth with reduced alveolar bone height. The stress and displacement of each element was observed and compared by the two-dimensional finite element method. The following results were obtained : 1. The greater the loss of alveolar bone in natural teeth area, the greater the displacement of FPD and the stress concentration in alveolar bone around implant, especially at the stress concentration in the mesial alveolar bone crest around implant fixture. 2. The displacement of FPD was increased more and that of implants fixture was decreased more when intramobile connector was used than titanium connector was used. Also the stress concentration in alveolar bone around implant fixture was greater when intramobile connector than titanium connector. One implication of this finding was that the difference in stiffness of implant and the natural teeth with reduced alveolar bone height could be partially compensated in case of the POM intramobile connector. 3. The amount and direction of displacement and the stress distribution of the 4-unit FPD was better than those of the 3-unit FPD. It implied that the difference of stiffness of implant and natural teeth with reduced alveolar bone height could be partially compensated in case of the 4 unit FPD.

  • PDF

Posture Analysis of Healthy Right-handed Male and the Effect of Chuna Treatment (건강한 오른손잡이 남성의 자세분석에 따른 추나치료의 효과)

  • Kim, Min-Soo;Lee, Ji-Young;Shin, Hee-Ra;Yeom, Seung-Ryong;Kwon, Young-Dal
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.27 no.3
    • /
    • pp.125-136
    • /
    • 2017
  • Objectives The present study was designed to analyze the posture pattern of healthy right-handed male and to investigate the effect of Chuna treatment. Methods Twenty healthy right-handed male were selected in this study. Body posture was measured by Body $Style^{(R)}$. After that, subjects received Chuna treatment on lumbar and pelvis area. Finally, the 2nd measurement was carried out. Results In shoulder height, left shoulder was higher than right one. In pelvic height, right iliac crest was higher than left, followed by longer right leg than left. In lower limb angle suggesting valgus or varus knee. In height of scapula inferior angle, right seemed higher than left. After the Chuna treatment, shoulder height, pelvic height, and leg length difference showed significant improvement. Other variables showed improvement but it was not significant. Conclusions These results suggest that right-handed male have some characteristic posture pattern because of their daily life habits, and Chuna treatment can be effective in correcting bad posture.

Hydraulic Stability and Wave Transmit Property of Stacked Geotextile Tube by Hydraulic Model Test (수리모형시험을 통한 다단식 지오텍스타일 튜브의 안정성 및 파랑 전달특성에 관한 연구)

  • Oh Young In;Shin Eun Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 2005
  • Geotextile have been used for the past 30 years for various types of containers, such as small sandbag, 3-D fabric forms and aggregate filled gabion etc. While they are mainly used for flood and water control, they are also used against beach erosion fir shore protection. Especially, large-sized geotextile tube structures are used in various innovative coastal systems involving breakwaters. This paper presents the hydrodynamic behavior of geotextile tubes based on the results of hydraulic model tests. These tube are generally about 1.0 m to 2.0 m in diameter, thou띤 they can be sized for any application. The tubes can be used solely, or stacked to add greater height and usability. Stacked geotextile tubes will be created by adding the height necessary for some breakwaters and embankment, therefore increasing the usability of geotextile tubes. The hydraulic model test was conducted as structural condition and wave conditions. Structural condition is installation direction to the wave (perpendicular and 45$^{circ}$$), and wave condition is varied with the significant wave height ranging from 3.0 m to 6.0 m. Compared with previous test result, the stacked geotextile tube is more stable against wave attack than single tube. Also, the case of none-water depth above crest is more stable than 0.5H of water depth above crest. The incline installed stacked tube is more effective for wave adsorption.

An Experimental Study on the Estimation Method of Overtopping Discharge at the Rubble Mound Breakwater Using Wave-Overtopping Height (월파고를 이용한 사석경사제의 월파량 산정방법에 관한 실험적 연구)

  • Dong-Hoon Yoo;Young-Chan Lee;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.192-199
    • /
    • 2024
  • Wave overtopping is a significant natural hazard that occurs in coastal areas, primarily driven by high waves, particularly those generated during typhoons, which can cause coastal flooding. The development of residential and commercial areas along the coast, driven by increasing social and economic demands, has led to a concentration of people and assets in these vulnerable areas. This, coupled with long-term sea level rise and an increase in typhoon frequency, has heightened the risk of coastal hazards. Traditionally, the evaluation of wave overtopping volumes has relied on directly measuring the collected volume of water that exceeds the crest height of structures through hydraulic model experiments. These experiments are averaged over a specific measurement period. However, in this study, we propose a new method for estimating individual wave overtopping volumes. We utilize the temporal variation of wave overtopping heights to develop an observation system that can quantitatively assess wave overtopping volumes in actual coastal areas. To test our method, we conducted hydraulic model experiments on rubble mound breakwaters, which are commonly installed along the Korean coast. We introduce wave overtopping discharge coefficients, assuming that the inundation velocity from the structure's crest is the long-wave velocity. We then predict overtopping volumes based on wave overtopping heights and compare and review the results with experimental data. The findings of our study confirm the feasibility of estimating wave overtopping volumes by applying the overtopping discharge coefficients derived in this study to wave overtopping heights.

Radiographic study of the distribution of maxillary intraosseous vascular canal in Koreans

  • Lee, JuHyon;Kang, Nara;Moon, Young-Mi;Pang, Eun-Kyoung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.1.1-1.4
    • /
    • 2016
  • Background: This study aimed to investigate the distribution and prevalence of intraosseous loop (anastomosis between posterior superior alveolar artery and infraorbital artery) in Koreans detected on computed tomography (CT) images taken prior to sinus augmentation surgery. Methods: From the 177 patients who underwent sinus augmentation with lateral approach at Ewha Womans University Department of Implant Dentistry, 284 CT scans were evaluated. The canal height (CH), ridge height (RH), and canal height from the sinus floor (CHS) were measured on para-axial views at the first premolar, first molar, and second molar. The horizontal positions of the bony canals in the lateral wall were also classified. One-way analysis of variance (ANOVA) and t test were used to estimate the statistical differences (p < 0.05). Results: The intraosseous loops were detected in 92 CT scans (32 %). The mean vertical height of the bony canals from the alveolar crest (CH) was $23.45{\pm}2.81$, $15.92{\pm}2.65$, and $16.61{\pm}2.92mm$ at the second premolar, first molar, and second molar, respectively. In the horizontal positions of the bony canals, intraosseous type was the most predominant. The canal heights more than 15 mm and less than 17 mm were most prevalent (33.7 %) and those under 13 mm were 12.0 %. Conclusions: The radiographic findings in this study could be used to decide the lateral osteotomy line avoiding potential vascular complication. However, only one third of the canals could be detected in CT scans; a precaution should be taken for the possibility of severe bleeding during lateral osteotomy.

Study of modified Westergaard formula based on dynamic model test on shaking table

  • Wang, Mingming;Yang, Yi;Xiao, Weirong
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.661-670
    • /
    • 2017
  • The dynamic model test of dam-reservoir coupling system for a 203m high gravity dam is performed to investigate effects of reservoir water on dynamic responses of dam during earthquake. The hydrodynamic pressure under condition of full reservoir, natural frequencies and acceleration amplification factors along the dam height under conditions of full and empty reservoir are obtained from the test. The results indicate that the reservoir water have a stronger influence on the dynamic responses of dam. The measured natural frequency of the dam model under full reservoir is 21.7% lower than that of empty reservoir, and the acceleration amplification factor at dam crest under full reservoir is 18% larger than that under empty reservoir. Seismic dynamic analysis of the gravity dams with five different heights is performed with the Fluid-Structure Coupling Model (FSCM). The hydrodynamic pressures from Westergaard formula are overestimated in the lower part of the dam body and underestimated in its upper part to compare with those from the FSCM. The underestimation and overestimation are more significance with the increase of the dam height. The position of the maximum hydrodynamic pressure from the FSCM is raised with the increase of dam height. In view of the above, the Westergaard formula is modified with consideration in the influence of the height of dam, the elasticity of dam on the hydrodynamic pressure. The solutions of modified Westergaard formula are quite coincident with the hydrodynamic pressures in the model test and the previous report.

The effect of different radiographic parameters on the height, width and visibility of cross-sectional image of mandible in spiral tomography (나선형 단층방사선사진촬영에서 촬영조건이 악골 단면상의 높이, 폭 및 인지도에 미치는 영향)

  • Lee Tae-Wan;Han Won-Jeong;Kim Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.33 no.1
    • /
    • pp.43-49
    • /
    • 2003
  • Purpose : To evaluate the differences in bone height, bone width, and visibility of posterior spiral tomographic images according to various exposure directions, image layer thickness, and inclination of the mandibular inferior border. Materials and Methods: Six partially and completely edentulous dry mandibles were radiographed using Scanora spiral tomography. Spiral tomography was performed at different exposure directions (dentotangential and maxillotangential projection), image layer thicknesses (2 mm, 4 mm and 8 mm), and at various inclinations to the mandibular border (+ 100, 00 and -10°). The bone height and width was measured using selected tomographic images. The visibility of mandibular canal, crestal bone, and buccal and lingual surfaces were graded as 0, 1, or 2. Results : The bone width at the maxillo-tangential projection was wider than at the dento-tangential projection (p < 0.05). The visibility of buccal and lingual surface at the maxillo-tangential projection was higher than at the dento-tangential projection (p<0.05). Thinner image layer thicknesses resulted in greater visibility of buccal and lingual surfaces (p < 0.05). Bone height was greatest in the -10° group, and at the same time the bone width of the same group was the narrowest (p < 0.05). The visibility of alveolar crest and buccal surface of the + 10° group was the highest, while the visibility of the mandibular canal was greatest in the 00 group. Conclusion: When spiral tomography is performed at the mandibular posterior portion for visualization prior to implant surgery, it is important that the inferior border of mandible be positioned as parallel as possible to the floor. A greater improvement of visibility can be achieved by maintaining a thin image layer thickness when performing spiral tomography.

  • PDF

A Experimental Study on the Observation of Free-Surface Flow around Ship's Bow (선수부 주위의 자곡표면류의 유동관측에 관한 실험적 고찰)

  • 박명규;김동률
    • Journal of the Korean Institute of Navigation
    • /
    • v.17 no.1
    • /
    • pp.37-48
    • /
    • 1993
  • When the vessel is running at the very low Froude numbers, the free-surface is difficult to be disturbed, wave-making is negligible, and the double -model velocity potential gives a very good approximation for calculating the velocity distribution just outside the boundary layer. If the speed of incident flow is gradually increased, the most perceptible change is the rise of the flow surface at stem. With further increase in speed, the nature of the flow at the bow changes completely, The flow ahead of the bow becomes more distrubed, the rise at the stem to stagnation height disappear, and the first wave crest, of less than the stagnation height, appears a small distance downstream from the stem. The present study is concerned with a small region of this flow, mainly in the bow region. The present investigation is primarily an experimental study of the flow in the bow region of s ship model, and it is undertaken in order to investigated systematically, the effect of bow geometry on this flow. The long-range objective is to use these results to guide the development of a mathematical model for predicting the flow about a ship's bow.

  • PDF