• Title/Summary/Keyword: crest height

Search Result 158, Processing Time 0.022 seconds

An assessment on cross-sectional view of the mandible by linear tomogram of panorama (파노라마촬영장치의 선형단층상에 의한 하악골의 협설단면 평가)

  • Hong Soon-Ki;Kim Jae-Duk
    • Imaging Science in Dentistry
    • /
    • v.31 no.2
    • /
    • pp.101-107
    • /
    • 2001
  • Purpose: To evaluate the precision of measurements of distances and angle in the cross-sectional views of linear tomogram of panorama and to assess the technique for visualizing the mandibular canal. Methods: Ten dry mandibles were radiographically examined with 3 continuous cross-sectional views of linear tomogram of panorama and 4 continuous computed tomograms. The distance between the superior border of canal and alveolar crest and the bucco-lingual width of alveolar bone at the level of the superior border of canal and the angle between the two lines above were measured. Measurements were performed by radiologist and implantologist group and compared with measurements on computed radiograms of the same areas. Results: The measurements differences for the distance of alveolar bone height between in panorama and in CT showed 0.9 mm±0.6 mm by radiologists and 1.3mm±0.8mm by implantologists. There was no statistically significant difference between two groups' measurements. The differences in measurements for the distance of alveolar bone width between in panorama and in CT showed 0.5mm±0.8mm by radiologists and 2.5mm±1.4 mm by implantologists. There was significant difference (P<0.05) between two groups' measurements. The average bucco-lingual inclination of alveolar bone above mandibular canal was average 95.8° in CT. The difference of measurements between two groups was average 1±0.9°. Three cross-sectional views of panorama could show that the mandibular canal crosses antero-lingually and slopes inferiorly from the posterior segment of the mandible. Conclusions: The measurements in the linear tomogram of panorama by radiologists gave the accurate values of the distances and the angle compared with the values in computed tomograms.

  • PDF

River Embankment Integrity Evaluation using Numerical Analysis (수치해석을 이용한 하천제방의 건전도 평가)

  • Byun, Yo-Seph;Jung, Hyuk-Sang;Kim, Jin-Man;Choi, Bong-Hyuck;Kim, Kyung-Min;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.524-528
    • /
    • 2009
  • An influence factors for soundness evaluation of river levee include resistibility and embankment for piping of ground consisting embankment in case piping, permeability coefficient of ground, height of embankment, the width of crest, material characteristics of embankment and foundation ground, shape of embankment slope, an influence for penetration of rainfall or river water in case slope stability. In this study, it was operated a feasibility investigation of existing design result, stability evaluation for permeability coefficient use and permeability coefficient change of foundation ground to investigate an influence in line with permeability coefficient change for result of river levee penetration analysis. The evaluation results of influence factors, the permeability coefficient used in design and it was evaluated influence in safety factor of piping. After the evaluation of influence factors, the permeability coefficient used in the design appears with the fact that differs in a design report about same soil, Accordingly, the stability investigation of embankment by application of literature data can affect stability evaluation results by change factors like a permeability coefficient, void ratio. It should be certainly used material properties by a test in soundness evaluation of river levee.

  • PDF

Long-term radiographic evaluation of infrabony defect treated by flap operation (치주판막술에 의해 치료된 골연하 결손부의 장기적 방사선학적 변화 양사의 관찰)

  • Bae, Sang-Ryul;Park, Jin-Woo;Suh, Jo-Young;Lee, Jae-Mok
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.3
    • /
    • pp.429-436
    • /
    • 2008
  • Purpose: The goal of periodontal regenerative therapy is to replace bone, cementum, and periodontal ligament on a previously diseased root surface, which has suffered the loss of these supporting structures. To accomplish the regeneration, a number of surgical procedures have been advocated throughout the years. There seems to be a potential for some spontaneous periodontal tissue regeneration in the bottom of periodontal defect following open flap debridement alone. The aim of this study was to analyse the radiographic bone changes over 2-year after flap operation. Material and Methods: Patients attending the department of periodontics of Kyungpook National University Hospital were studied. Patients had clinical and radiographic evidence of infrabony defect(s). forty two sites of 33 patients aged 26 to 65 (mean age 45.5) were treated by flap operation with or without osseous surgery. Baseline and over 2-year follow-up radiographs were collected and evaluated for this study. Radiographic assessment includes a bone fill, bone crest change, defect resolution, and % of defect resolution. Pre- and post-treatment differences between variables (maxilla and mandible, gender, defect depth, defect angle) using the paired t-test were examined. Result: We observed 0.74 mm of bone fill, 0.66 mm of crestal resorption, 1.40 mm of defect resolution, and 27% of percentage of defect resolution. Mandible, women, deeper initial defect depth, narrower initial defect angle showed greater bone fill, defect resolution, and % of defect resolution. Conclusion: The results of this study suggest that the use of flap operation did enhance the outcome in terms of radiographically detectable bone fill. Both treatment resulted in some loss of crestal bone height.

Numerical Analysis for Integrity Evaluation of River Bank (하천제방의 건전도 평가를 위한 수치해석적 연구)

  • Jung, Hyuksang;Byun, Yoseph;Chun, Byungsik;Choi, Bonghyuck;Kim, Jinman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.19-26
    • /
    • 2010
  • An influence factors for soundness evaluation of river levee include consisting embankment in case piping, permeability coefficient of ground, height of embankment, the width of crest, material characteristics of embankment and foundation ground, shape of embankment slope, an influence for penetration of rainfall or river water in case slope stability. In this study, it was operated a feasibility investigation of existing design result, stability evaluation for permeability coefficient use and permeability coefficient change of foundation ground to investigate an influence in line with permeability coefficient change for result of river levee penetration analysis. The evaluation results of influence factors, the permeability coefficient was used in design and it was evaluated influence in safety factor of piping. After the evaluation of influence factors, the permeability coefficient used in the design appears with the fact that differs in a design report about same soil.

Correlation of Radiographic and Patient Assessment of Spine Following Correction of Nonstructural Component in Juvenile Idiopathic Scoliosis

  • Lee, Jin Gyeong;Yun, Young Cheol;Jo, Won Jae;Seog, Tae Yong;Yoon, Yong-Soon
    • Annals of Rehabilitation Medicine
    • /
    • v.42 no.6
    • /
    • pp.863-871
    • /
    • 2018
  • Objective To evaluate the association between progression of curvature of scoliosis, and correction for functional component in patients with juvenile idiopathic scoliosis (JIS). Methods We retrospectively reviewed medical data of patients prescribed custom molded foot orthosis (FO) to correct inequality of RCSPA (resting calcaneal stance position angle), and chose 52 patients (26 females, 26 males) with Cobb angle ${\geq}10^{\circ}$ in radiology and uneven pelvic level at iliac crest by different RCSPA (${\geq}3^{\circ}$) as a factor of functional scoliosis. They had different hump angle ${\geq}5^{\circ}$ in forward bending test, for idiopathic scoliosis component. Their mean age and mean period of wearing FO were $79.5{\pm}10.6months$ and $18.6{\pm}0.70months$. Results Cobb angle was reduced from $22.03^{\circ}{\pm}4.39^{\circ}$ initially to $18.86^{\circ}{\pm}7.53^{\circ}$ after wearing FO. Pelvis height difference and RCSPA difference, were reduced from $1.07{\pm}0.25cm$ initially to $0.60{\pm}0.36$, and from $4.25^{\circ}{\pm}0.71^{\circ}$ initially to $1.71^{\circ}{\pm}0.75^{\circ}$ (p<0.01). Cobb angle improved most in 9 months. However, there was no significant improvement for those with more than $25^{\circ}$ of Cobb angle initially. Mean Cobb angle improved in all age groups, but patients less than 6 years had clinically significant improvement of more than $5^{\circ}$. Conclusion JIS can have functional components, which should be identified and managed. Foot orthosis is useful in correcting functional factors, in the case of pelvic inequality caused by different RCSPA, for patients with juvenile idiopathic scoliosis.

Analysis of Wave Transmission Characteristics on the TTP Submerged Breakwater Using a Parabolic-Type Linear Wave Deformation Model

  • Jeong, Jin-Hwan;Kim, Jin-Hoon;Lee, Jung-Lyul
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.82-90
    • /
    • 2021
  • Owing to the advantages of assuring the best views and seawater exchange, submerged breakwaters have been widely installed along the eastern coast of Korea in recent years. It significantly contributes to promoting the advancement of shorelines by partially inhibiting incident wave energy. Observations were carried out by a pressure-type wave gauge in the Bongpo Beach to evaluate the coefficients of wave transmission via a submerged breakwater, and the results obtained were compared with those of existing conventional equations on the transmission coefficient derived from hydraulic experiments. After reviewing the existing equations, we proposed a transmission coefficient equation in terms of an error function. Although it exhibited robust relationships with the crest height and breaking coefficient, deviations from the observed data were evident and considered to be triggered by the difference in the incident wave climate. Therefore, in this study, we conducted a numerical experiment to verify the influence of wave period on the coefficients of wave transmission, in which we adopted a parabolic-type mild-slope equation model. Consequently, the deviation from calculated results appears to practically cover all deviation range in the observed data. The wave period and direction of the incident wave increased, the transmission coefficient decreased, and the wave direction was determined to demonstrate a relatively significant influence on the transmission coefficient. It was inferred that this numerical study is expected to be used practically in evaluating the design achievement of the submerged breakwater, which is adopted as a countermeasure to coastal beach erosion.

A Study on a Calculation Method of Economical Intake Water Depth in the Design of Head Works (취입모의 경제적 계획취입수심 산정방법에 대한 연구)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4592-4598
    • /
    • 1978
  • The purpose of this research is to find out mathemetically an economical intake water depth in the design of head works through the derivation of some formulas. For the performance of the purpose the following formulas were found out for the design intake water depth in each flow type of intake sluice, such as overflow type and orifice type. (1) The conditional equations of !he economical intake water depth in .case that weir body is placed on permeable soil layer ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } { Cp}_{3 }L(0.67 SQRT { q} -0.61) { ( { d}_{0 }+ { h}_{1 }+ { h}_{0 } )}^{- { 1} over {2 } }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { dcp}_{3 }L+ { nkp}_{5 }+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ] =0}}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } C { p}_{3 }L(0.67 SQRT { q} -0.61)}}}} {{{{ { ({d }_{0 }+ { h}_{1 }+ { h}_{0 } )}^{ - { 1} over {2 } }- { { 3Q}_{1 } { p}_{ 6} { { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{ 2}m' SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L }}}} {{{{+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 } L+dC { p}_{4 }L+(2 { z}_{0 }+m )(1-s) { L}_{d } { p}_{7 }]=0 }}}} where, z=outer slope of weir body (value of cotangent), h1=intake water depth (m), L=total length of weir (m), C=Bligh's creep ratio, q=flood discharge overflowing weir crest per unit length of weir (m3/sec/m), d0=average height to intake sill elevation in weir (m), h0=freeboard of weir (m), Q1=design irrigation requirements (m3/sec), m1=coefficient of head loss (0.9∼0.95) s=(h1-h2)/h1, h2=flow water depth outside intake sluice gate (m), b=width of weir crest (m), r=specific weight of weir materials, d=depth of cutting along seepage length under the weir (m), n=number of side contraction, k=coefficient of side contraction loss (0.02∼0.04), m2=coefficient of discharge (0.7∼0.9) m'=h0/h1, h0=open height of gate (m), p1 and p4=unit price of weir body and of excavation of weir site, respectively (won/㎥), p2 and p3=unit price of construction form and of revetment for protection of downstream riverbed, respectively (won/㎡), p5 and p6=average cost per unit width of intake sluice including cost of intake canal having the same one as width of the sluice in case of overflow type and orifice type respectively (won/m), zo : inner slope of section area in intake canal from its beginning point to its changing point to ordinary flow section, m: coefficient concerning the mean width of intak canal site,a : freeboard of intake canal. (2) The conditional equations of the economical intake water depth in case that weir body is built on the foundation of rock bed ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { nkp}_{5 }}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0 }}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{6 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{2 }m' SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0}}}} The construction cost of weir cut-off and revetment on outside slope of leeve, and the damages suffered from inundation in upstream area were not included in the process of deriving the above conditional equations, but it is true that magnitude of intake water depth influences somewhat on the cost and damages. Therefore, in applying the above equations the fact that should not be over looked is that the design value of intake water depth to be adopted should not be more largely determined than the value of h1 satisfying the above formulas.

  • PDF

A Case Study on Deformation Behaviors of CFRD with Water Level Change (수위변화에 따른 CFRD의 변형거동 사례분석)

  • Yun, Jung-Mann;Yea, Geu-Guwen;Kim, Hong-Yeon;Lee, Jae-Yeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.21-31
    • /
    • 2018
  • This paper analyzes the displacements of CFRD which was completed by field measurement. It is to understand the deformation behavior of the dam body according to the water level change from the impounding time. And it was compared with numerical analysis results. As a result of measuring the behavior of the dam crest and downstream slope according to impounding, horizontal displacements in axis direction of the dam, upstream and downstream displacements and settlements occurred mostly when the water level reaches about half of the dam height. The displacements continued until the water level reached its maximum. After that, it showed a constant convergence regardless of the water level. Horizontal displacements of the face slab which is the most important in CFRD were similar at all locations. The Horizontal displacements of the face slab showed the trends of increasing in winter and decreasing in summer due to the effect of the outside temperature before impounding. Also, the displacements increased until the water level reached about half of the dam height. After that, they decreased with rising in water level. As a result, the face slab behaviors according to seasonal change after impounding as well as water level condition. It is judged because of the material characteristics of the concrete slab. Numerical analysis showed slightly different maximum settlement and depth of occurrence from the measuring data after construction of the dam. It is considered that this is due to various design and construction differences such as the estimation of input parameters in analysis, construction period, and the layer thickness of construction. For the overall period of the dam, the settlements were mostly completed during the construction period and some settlements occurred in the early days of impounding and then converged.

Characteristics of accretion and scour around artificial reefs in the southern waters of Korea (한국 남해안에 시설된 인공어초 주위의 퇴적과 세굴 특성)

  • Kim, Chang-Gil;Suh, Sung-Ho;Oh, Tae-Gun;Kim, Byung-Gyun;Choi, Yong-Suk;Sheehy, Daniel J.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.233-233
    • /
    • 2011
  • This study describes the characteristics of accretion and scour around artificial reefs in Korea. The survey for accretion and scour was made at a dice reef set consisting of 137 dice reefs. The volume of a dice reef unit is 8 $m^3$. The reef set was placed on the muddy sand at 21.6 m in November of 1999. Equipment used in the survey includes Side Scan Sonar, Multi Beam Echo Sounder, Sub-Bottom Profiler and water current meter. According to the results, the artificial reefs are heaped up at two to three times (4 m) the height of the dice reef. The maximum current around the artificial reefs was 81.5 cm/sec at the ebb tide and 72.7 cm/sec at the flood tide. Scour around artificial reefs occurs upstream to the flow while accretion is formed at wake zone in the downstream. The height of accretion ranges from 2.4 to 3.0 m. The crest of the accretion is formed at the distance of about 10 m from the edge of the reef. The slope of accretion is formed steeply at the vicinity of the reef which is at right angles to the direction of main current, and grows gently lower with the increased distance from the reef. Scour is continuously caused by upwelling from the reef set and by side currents that flow parallel to side of the accretion. Also, scour takes place on the deposited sediment rather than on the remaining bottom sediments. This means that, once fully formed, the depth of scour gully on both sides to the direction of main current hardly changes.

  • PDF

Alveolar ridge preservation with an open-healing approach using single-layer or double-layer coverage with collagen membranes

  • Choi, Ho-Keun;Cho, Hag-Yeon;Lee, Sung-Jo;Cho, In-Woo;Shin, Hyun-Seung;Koo, Ki-Tae;Lim, Hyun-Chang;Park, Jung-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.6
    • /
    • pp.372-380
    • /
    • 2017
  • Purpose: The aim of this prospective pilot study was to compare alveolar ridge preservation (ARP) procedures with open-healing approach using a single-layer and a double-layer coverage with collagen membranes using radiographic and clinical analyses. Methods: Eleven molars from 9 healthy patients requiring extraction of the maxillary or mandibular posterior teeth were included and allocated into 2 groups. After tooth extraction, deproteinized bovine bone mineral mixed with 10% collagen was grafted into the socket and covered either with a double-layer of resorbable non-cross-linked collagen membranes (DL group, n=6) or with a single-layer (SL group, n=5). Primary closure was not obtained. Cone-beam computed tomography images were taken immediately after the ARP procedure and after a healing period of 4 months before implant placement. Radiographic measurements were made of the width and height changes of the alveolar ridge. Results: All sites healed without any complications, and dental implants were placed at all operated sites with acceptable initial stability. The measurements showed that the reductions in width at the level 1 mm apical from the alveolar crest (including the bone graft) were $-1.7{\pm}0.5mm$ in the SL group and $-1.8{\pm}0.4mm$ in the DL group, and the horizontal changes in the other areas were also similar in the DL and SL groups. The reductions in height were also comparable between groups. Conclusions: Within the limitations of this study, single-layer and double-layer coverage with collagen membranes after ARP failed to show substantial differences in the preservation of horizontal or vertical dimensions or in clinical healing. Thus, both approaches seem to be suitable for open-healing ridge preservation procedures.